Math, asked by atrinadh0279, 9 months ago

n(a) =12, n(B)=15 then n(A union B)=25 then find n(A intersection B)=?

Answers

Answered by Abhishek474241
2

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • \sf{n(a)=12\:And{n(B)}=15}
  • \sf{n(a)\cup{n(B)}}=25

{\sf{\green{\underline{\large{To\:find}}}}}

  • \sf{n(a)\cap{n(B)}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

Formula

\sf{n(a)\cap{n(B)}}={n(a)+n(B)-}{n(a)\cup{n(B)}}

putting values

\implies\sf{n(a)\cap{n(B)}}={n(a)+n(B)-}{n(a)\cup{n(B)}}

\implies\sf{n(a)\cap{n(B)}}={12+15-}{n(a)\cup{n(B)}}

\implies\sf{n(a)\cap{n(B)}}={27-}25

\therefore\sf{n(a)\cap{n(B)}}=2

Hence value of \therefore\sf{n(a)\cap{n(B)}}=2

Similar questions