n(A)=20
n(B) =28 and n(AUB) = 36.
than n(AnB)=
Answers
Answered by
0
Answer:
12
Step-by-step explanation:
GIVEN :
If n (A) = 20, n (B) = 28 and n( A\cup B) = 36n(A∪B)=36 then n (A\cap B)n(A∩B)
TO FIND :
The value of n (A\cap B)n(A∩B)
SOLUTION :
Given that n (A) = 20, n (B) = 28 and n( A\cup B) = 36n(A∪B)=36
The formula in Set theory is given by :
n( A\cup B) = n(A)+n(B)-n (A\cap B)n(A∪B)=n(A)+n(B)−n(A∩B)
Now substituting the values in the above formula we get,
36 = 20+28-n (A\cap B)36=20+28−n(A∩B)
36=48-n (A\cap B)36=48−n(A∩B)
n (A\cap B)=48-36n(A∩B)=48−36
= 12
∴ n (A\cap B)=12n(A∩B)=12
∴ the value of n (A\cap B)n(A∩B) is 12
Similar questions