n(A)=36,n(B)=10,n(AuB)=40,n(A') =27,find n(ANB) and n(U)
Answers
SOLUTION
GIVEN
n(A) = 36 , n(B) = 10 , n(A∪B)=40 , n(A') = 27
TO DETERMINE
n(A∩B) and n(U)
EVALUATION
Here it is given that
n(A) = 36 , n(B) = 10 , n(A∪B)=40 , n(A') = 27
n(A') =27 gives
n(U) - n(A) = 27
⇒ n(U) = 36 + 27
∴ n(U) = 63
Again n(A∪B) = 40 gives
n(A) + n(B) - n(A∩B) = 40
⇒ 36 + 10 - n(A∩B) = 40
⇒ n(A∩B) = 46 - 40
⇒ n(A∩B) = 6
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
If n(A) = 300, n(A∪B) = 500, n(A∩B) = 50 and n(B′) = 350, find n(B) and n(U).
https://brainly.in/question/4193770
2. If A, B and C are any three sets
then prove the following using venn-diagram
A∩(BUC) = (A∩B) U (A∩C)
https://brainly.in/question/23234089
SOLUTION
GIVEN
n(A) = 36 , n(B) = 10 , n(A∪B)=40 , n(A') = 27
TO DETERMINE
n(A∩B) and n(U)
EVALUATION
Here it is given that
n(A) = 36 , n(B) = 10 , n(A∪B)=40 , n(A') = 27
n(A') =27 gives
n(U) - n(A) = 27
⇒ n(U) = 36 + 27
∴ n(U) = 63
Again n(A∪B) = 40 gives
n(A) + n(B) - n(A∩B) = 40
⇒ 36 + 10 - n(A∩B) = 40
⇒ n(A∩B) = 46 - 40
⇒ n(A∩B) = 6
━━━━━━━━━━━━━━━━