Math, asked by chinmayram001, 17 days ago

n(A)=4,n(B)=m and the number of relations from A to B is 256 ,then the value of m is​

Answers

Answered by education8425
0

Answer:

If n(A)=2,n(B)=m and the number of relation from A to B is 64, then the value of m is

Easy

1

3

5

2

Solution

verified

Verified by Toppr

Correct option is B)

The number of relations between sets can be calculated using 2

mn

where m and n represent

the number of members in each set.

Given that n(A)=2 and n(B)=m

So,

2

2m

=64

2

2m

=2

6

On comparing powers of 2 we get,

2m=6

m=3

Answered by ashokfarsanmart
1

Answer:

If n(A)=2,n(B)=m and the number of relation from A to B is 64, then the value of m is

Easy

Solution

verified

Verified by Toppr

Correct option is B)

The number of relations between sets can be calculated using 2

mn

where m and n represent

the number of members in each set.

Given that n(A)=2 and n(B)=m

So,

2

2m

=64

2

2m

=2

6

On comparing powers of 2 we get,

2m=6

m=3

Similar questions