Math, asked by Indian9998, 10 months ago

N(a-b) =b(a+b) find the valu of n

Answers

Answered by anu24239
1

ANSWER

n(a - b) = b(a +b ) \\ n.a - n.b = ba +  {b}^{2}  \\ na - ba =  {b}^{2}  + n.b \\ a(n - b) = b(n + b) \\  \frac{a}{b}  =  \frac{n + b}{n - b}  \\  \\ now \: apply \: componendo \: and \: dividendo \\  \\  \frac{a  + b}{a - b}  =  \frac{n + b + n - b}{n + b - (n - b)}  \\  \frac{a + b}{a - b}  =  \frac{2n}{2b}  \\  \\ n =  \frac{b(a + b)}{a - b}

WHAT IS COMPONENDO AND DIVIDENDO?

suppose \: any \: fraction....  \\  \frac{a}{b}  \: which \: is \: equal \: to \: another \\ fraction \: let \: say \:  \frac{c}{d}  \: than \: acc \: to \\ compo. \: and \: dividendo \\  \\  \frac{a}{b}  =  \frac{c}{d}  \\  \\  \frac{a + b}{a - b}  =  \frac{c + d}{c - d}

Similar questions