Math, asked by anitakanwarbhati81, 22 days ago

N A quadratic polynomial, whose zeroes are - 3 and 4.is (A) r-x+ 12 (B) + x + 12 R2-6 6 (C) (D) 2r + 2x - 24 2 2 OA B oc OD​

Answers

Answered by amansharma264
9

EXPLANATION.

Quadratic polynomial.

Whose zeroes are = - 3 and 4.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ - 3 + 4 = 1.

⇒ α + β = 1.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ (-3) x (4) = - 12.

⇒ αβ = - 12.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (1)x + (-12).

⇒ x² - x - 12.

                                                                                                                 

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Anonymous
107

Answer:

Given ;-

  • A quadratic polynomial whose zeroes are- 3 and 4.

To find: -

  • A quadratic polynomial.

Solution :-

  • Here one thing we know that,

  • Sum of zeroes of quadratic polynomial ,

 \alpha  +  \beta  =  \frac{ - b}{ \:  \: a}

  • Now applying all the values we get,

  •  - 3 + 4 = 1
  •  \alpha  +  \beta  = 1

And we know that ,

  • Product of zeroes Of quadratic polynomial is

 \alpha  \beta  =  \frac{c}{a}

  • Now applying all the values we get,

  •  - 3 \times 4 =  - 12
  •  \alpha  \beta  =  - 12

Here,

  • We know the quadratic equation formula that is ,

 {x}^{2}  -  (\alpha  +  \beta )x +  \alpha  \beta

  • Now taking the values we get that,

  •  {x}^{2}  - 1x + ( - 12) =  { {x}^{2} - x - 12}^{2}

Hope it helps u mate .

Thank you .

Similar questions