Math, asked by kotwalmayuri50, 11 months ago

n and r, if npr =120 ,ncr=20​

Answers

Answered by GreatMihir
8

Answer:

The Value of r is 3

The value of n is 6

Step-by-step explanation:

ncr = npr ÷ r!

20 = 120 ÷ r!

r! = 6

so r =3

Answered by pulakmath007
12

The values are : n = 6 , r = 3

Given :

 \displaystyle \sf{ {}^{n}P_{r} = 120 \: }

 \displaystyle \sf{ {}^{n}C_{r} = 20 \: }

To find :

The value of n and r

Solution :

Step 1 of 3 :

Write down the given data

Here it is given that

 \displaystyle \sf{ {}^{n}P_{r} = 120 \: }

 \displaystyle \sf{ {}^{n}C_{r} = 20 \: }

Step 2 of 3 :

Calculate the value of r

 \displaystyle \sf{ {}^{n}P_{r} = 120 \: }

 \displaystyle \sf{ {}^{n}C_{r} = 20 \: }

 \implies \displaystyle \sf{ \frac{n! }{(n - r)! } = 120\: }  \: . \: . \:. \:. \:. \:(1)

Again \displaystyle \sf{ {}^{n}C_{r} = 20 \: }

 \implies \displaystyle \sf{ \frac{n! }{r!(n - r)! } = 20\: } \: . \: . \:. \:. \:. \:(2)

Equation (1) ÷ Equation (2) gives

 \sf{r ! = 6}

 \implies \sf{r ! = 3 \times 2 \times 1}

 \implies \sf{r ! = 3 !}

 \implies \sf{r = 3 \: }

Step 3 of 3 :

Calculate the value of n

From Equation (2) we get

 \displaystyle \sf{ \frac{n! }{3!(n - 3)! } = 20\: } \: \: \:

\displaystyle \sf{ \implies n(n - 1)(n - 2) = 20 \times 3!}

\displaystyle \sf{ \implies n(n - 1)(n - 2) = 20 \times 6}

\displaystyle \sf{ \implies n(n - 1)(n - 2) = 120 }

\displaystyle \sf{ \implies n(n - 1)(n - 2) = 6 \times 5 \times 4}

\displaystyle \sf{ \implies n(n - 1)(n - 2) = 6 \times (6 - 1) \times (6 - 2)}

Comparing both sides we get n = 6

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 7. 5pr = 7pr – 1, then find r.(question based on permutation and combination chapter)

https://brainly.in/question/26877723

2. If nPr = 3024 and nCr = 126 then find n and r.

https://brainly.in/question/29044585

Similar questions