Math, asked by pankajbabu700, 1 year ago

N
cot (90° - 0) tano - cosec (90° - 0) seco
sin 12° cos 15° sec 78°cos ec 75°
cos? (50° + 0) + cos² (40°-0)
t an 15° tan 37° tan 53° tan 75°​

Answers

Answered by rishu6845
3

Answer:

1) - 1

2) 1

3) 1

4) 1

Step-by-step explanation:

Given--->

1) Cot(90° -θ ) tanθ - Cosec(90° - θ ) Secθ

2) Sin12° Cos15° Sec78° Cosec75°

3) Cos² ( 50° + θ ) + Cos² ( 40° - θ )

4) tan15° tan37° tan53° tan75°

To find---> Value of given expression

Solution

We know that,

a) Sin(90° - θ ) = Cosθ

b) Cos( 90° - θ ) = Sinθ

c) tan ( 90° - θ ) = Cotθ

d) Cot ( 90° - θ ) = tanθ

e) Sec ( 90° - θ ) = Cosecθ

f) Cosec ( 90° - θ ) = Secθ

Now we solve the original problem one by one.

1) Cot(90° - θ ) tanθ - Cosec(90° - θ ) Secθ

Applying above formula ,

= tanθ tanθ - Secθ Secθ

= tan²θ - Sec²θ

= - ( Sec²θ - tan²θ )

We know that Sec²A - tan²A = 1 , applying it , we , get,

= - ( 1 )

= -1

2) Sin12° Cos15° Sec78° Cosec75°

= Sin12° Cos15° Sec ( 90° - 12° ) Cosec ( 90° - 15° )

= Sin12° Cos15° Cosec12° Sec15°

= Sin12° Cos15° ( 1 / Sin12° ) ( 1 / Cos15° )

= 1

3) Cos² ( 50° + θ ) + Cos² ( 40° - θ )

= Cos² ( 50° + θ ) + [ Cos { 90° - ( 50° + θ ) } ]²

= Cos² ( 50° + θ ) + { Sin ( 50° + θ ) }²

= Cos² ( 50° + θ ) + Sin² ( 50 ° + θ )

We know that , Sin² θ + Cos²θ = 1 , applying it , we get,

= 1

4) tan15° tan37° tan53° tan75°

= tan15° tan37° tan ( 90° - 37° ) tan ( 90° - 15° )

= tan15° tan37° Cot 37° Cot 15°

= tan 15° tan37° ( 1 / tan37° ) ( 1 / tan15° )

= 1

#Answerwithquality

# BAL

Answered by Anonymous
1

Answer:

Step-by-step explanation:

Given--->

1) Cot(90° -θ ) tanθ - Cosec(90° - θ ) Secθ

2) Sin12° Cos15° Sec78° Cosec75°

3) Cos² ( 50° + θ ) + Cos² ( 40° - θ )

4) tan15° tan37° tan53° tan75°

To find---> Value of given expression

Solution

We know that,

a) Sin(90° - θ ) = Cosθ

b) Cos( 90° - θ ) = Sinθ

c) tan ( 90° - θ ) = Cotθ

d) Cot ( 90° - θ ) = tanθ

e) Sec ( 90° - θ ) = Cosecθ

f) Cosec ( 90° - θ ) = Secθ

Now we solve the original problem one by one.

1) Cot(90° - θ ) tanθ - Cosec(90° - θ ) Secθ

Applying above formula ,

= tanθ tanθ - Secθ Secθ

= tan²θ - Sec²θ

= - ( Sec²θ - tan²θ )

We know that Sec²A - tan²A = 1 , applying it , we , get,

= - ( 1 )

= -1

2) Sin12° Cos15° Sec78° Cosec75°

= Sin12° Cos15° Sec ( 90° - 12° ) Cosec ( 90° - 15° )

= Sin12° Cos15° Cosec12° Sec15°

= Sin12° Cos15° ( 1 / Sin12° ) ( 1 / Cos15° )

= 1

3) Cos² ( 50° + θ ) + Cos² ( 40° - θ )

= Cos² ( 50° + θ ) + [ Cos { 90° - ( 50° + θ ) } ]²

= Cos² ( 50° + θ ) + { Sin ( 50° + θ ) }²

= Cos² ( 50° + θ ) + Sin² ( 50 ° + θ )

We know that , Sin² θ + Cos²θ = 1 , applying it , we get,

= 1

4) tan15° tan37° tan53° tan75°

= tan15° tan37° tan ( 90° - 37° ) tan ( 90° - 15° )

= tan15° tan37° Cot 37° Cot 15°

= tan 15° tan37° ( 1 / tan37° ) ( 1 / tan15° )

= 1

Similar questions