Math, asked by yadvendra7669, 3 days ago

n!>2^n for all integers n≥4

Answers

Answered by goodquestionsonlyher
2

Take logarithm on both numbers.

\text{$\cdots\longrightarrow\log{n!}\text{ or }\log{2^{n}}$}

By properties of logarithms,

\text{$\cdots\longrightarrow\log{1}+\log{2}+\cdots+\log{n}\text{ or }n\log{2}$}

Let's divide both sides by \log{2}.

\text{$\cdots\longrightarrow\dfrac{\log{1}}{\log{2}}+\dfrac{\log{2}}{\log{2}}+\cdots+\dfrac{\log{n}}{\log2}\text{ or }n$}

We know that \large\text{$n!$} exceeds \large\text{$2^{n}$} at \large\text{$n=4$}. Assume we know the base change of logarithms.

\text{$\cdots\longrightarrow\log_{2}{1}+\log_{2}{2}+\cdots+\log_{2}{n}\text{ or }n$}

Putting n=4, -

\text{$\cdots\longrightarrow\log_{2}{1}+\log_{2}{2}+\cdots+\log_{2}{4}>4$}

For \large\text{$k\geq2$},

\text{$\cdots\longrightarrow\log_{2}{k}>k.$}

Putting n=k+1, -

\text{$\cdots\longrightarrow\log_{2}{1}+\log_{2}{2}+\cdots+\log_{2}{k}>k+1.$}

By mathematical induction, the inequality \large\text{$n!>2^{n}$} is true for \large\text{$n\geq4$} \blacksquare

Similar questions