Math, asked by pari457, 3 months ago

N is a natural no. such that N=2^3×3^4×5^7×7^2×11 total no. of factors of N is
(1)-4×5×8×3×2
(2)-6×7×8
(3)-5×8×3×2
(4)-5×6×7×8×9

Answers

Answered by mathdude500
0

Answer:

 \boxed{\sf \:(1) \:  \: \: 4 \times 5 \times 8 \times 3 \times 2 \: } \\

Step-by-step explanation:

Given that, N is a natural number such that

\sf \: N =  {2}^{3} \times  {3}^{4} \times  {5}^{7} \times  {7}^{2} \times 11 \\

We know,

If N is a composite number such that N =  \sf \: x^a y^b z^c, where x, y, z are prime numbers and a, b, c are natural numbers, then number of factors is (a + 1)(b + 1)(c + 1).

So, using this result, we get

\sf \: Number\:of\:factors \\

\sf \:  =  \: (3 + 1)(4 + 1)(7 + 1)(2 + 1)(1 + 1) \\

\sf \:  =  \: (4)(5)(8)(3)(2) \\

\sf \:  =  \: 4 \times 5 \times 8 \times 3 \times 2 \\

Hence,

\implies\sf \: \boxed{\sf \: Number\:of\:factors  =  \: 4 \times 5 \times 8 \times 3 \times 2 \: } \\

\rule{190pt}{2pt}

Additional Information

If N is a composite number such that N =  \sf \: x^a y^b z^c, where x, y, z are prime numbers and a, b, c are natural numbers, then

\sf \: Sum\:of\:factors = \bigg( \dfrac{ {x}^{a + 1}  - 1}{x - 1} \bigg)\bigg( \dfrac{ {y}^{b + 1}  - 1}{y - 1} \bigg)\bigg( \dfrac{ {z}^{c + 1}  - 1}{z - 1} \bigg)  \\

\sf \: Number\:of\:factors = (a + 1)(b + 1)(c + 1)  \\

\sf \:Product\:of\:factors =  {N}^{ \frac{Number\:of\:factors}{2} }  \\

Similar questions