Math, asked by abhijeetpee, 3 days ago

n² + 240n − 4939 = 0 solve this please ?​

Answers

Answered by katnolly111
0

Answer:

n = \frac{-240 + \sqrt{37875} }{2} and  \frac{-240 - \sqrt{37875} }{2}

Step-by-step explanation:

n² + 240n − 4939 = 0

Use the quadratic formula.

n = \frac{-b + \sqrt{b^{2} - 4ac } }{2a} and n = \frac{-b - \sqrt{b^{2} - 4ac } }{2a}

here, a = 1, b = 240 and c = -4939

n = \frac{-240 + \sqrt{240^{2} - 4(4939) } }{2} and \frac{-240 - \sqrt{240^{2} - 4(4939) } }{2}

n = \frac{-240 + \sqrt{57600 - 19725 } }{2} and \frac{-240 - \sqrt{57600 - 19725 } }{2}

n = \frac{-240 + \sqrt{37875} }{2} and  \frac{-240 - \sqrt{37875} }{2}

n =  \frac{-240 + 2 \sqrt{19339} }{2} and \frac{-240 - 2 \sqrt{19339} }{2}

n = -120 +  \sqrt{19339} and -120 -  \sqrt{19339}

Similar questions