n2+241N-4662 FIND the factor
Answers
Answered by
0
Answer:
Use the sum-product pattern
2
+
2
4
1
−
4
6
6
2
n^{2}+{\color{#c92786}{241n}}-4662
n2+241n−4662
2
+
2
5
9
−
1
8
−
4
6
6
2
n^{2}+{\color{#c92786}{259n}}{\color{#c92786}{-18n}}-4662
n2+259n−18n−4662
2
Common factor from the two pairs
2
+
2
5
9
−
1
8
−
4
6
6
2
n^{2}+259n-18n-4662
n2+259n−18n−4662
(
+
2
5
9
)
−
1
8
(
+
2
5
9
)
n(n+259)-18(n+259)
n(n+259)−18(n+259)
3
Rewrite in factored form
(
+
2
5
9
)
−
1
8
(
+
2
5
9
)
n(n+259)-18(n+259)
n(n+259)−18(n+259)
(
−
1
8
)
(
+
2
5
9
)
(n-18)(n+259)
(n−18)(n+259)
Solution
(
−
1
8
)
(
+
2
5
9
)
Step-by-step explanation:
Hope You Understand That !
Thank You !
Similar questions