Math, asked by jabalpuri111, 9 months ago

n² - 2n+28= 0 solve it by spliting the middle term plzzz answer fast plzzzz give the value of n... if not by splitting the middle term then try by other method

I am waiting and plz give answer in steps plzzzzzz​ any one give me the answer.

I am waiting and plz give answer in steps plzzzzzz​ any one give me the answer. plz give me the value of n​

Answers

Answered by hipsterizedoll410
1

Answer: 1±6√3i

Given:

\sf n^2-2n+28

To find:

\sf Roots\:of\:the\:equation.

Formula used:

\sf For\:any\:quadratic\:equation\:like,ax^2+bx+c,

\boxed{\sf Discriminant\:of\:the\:equation(D):{b^2-4ac}}

\sf If,\\D>0\:\rightarrow Two\:real\:solutions\:exist\\D=0\:\rightarrow One\:real\:solution\:exist\\D<0\:\rightarrow No\:real\:solution\:exist(i.e.\:Two\:imaginary\:solutions\:exist)

\sf The\:solution\:for\:an^2+bn+c=0\:can\:be\:given\:by\:quadratic\:formula:

\boxed{\sf{n=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}}}

Explanation:

\sf According\:to\:the\:question,

\sf a=1\\b=-2\\c=28

Finding D:

\Rightarrow{2^2-4\times1\times28}

\Rightarrow \sf{4-112}

\Rightarrow \sf {-108}

\sf which\:means\:that,\:two\:imaginary\:solutions\:exist.

\sf On\:applying\:quadratic\:formula, we\:get:

\sf{n=\dfrac{2 \pm \sqrt{-108}}{2}}}

\sf \sqrt{-108}\:can\:be\:simplified\:as:

\Rightarrow \sf \sqrt{108\times-1} \\

\Rightarrow \sf \sqrt{108}\times\sqrt{-1}

\sf We\:know\:that\:value\:of\:i=\sqrt{-1}.Therefore,

\Rightarrow \sf \sqrt{108}i

\sf 108\:can\:be\:futher\:simplified\:as,

\Rightarrow\sf 6\sqrt{3}

\sf Hence,

\sf {\dfrac{2 + \sqrt{-108}}{2}}}=\sf{1 + \sqrt{108}i}=1+6\sqrt{3}i

\sf {\dfrac{2 - \sqrt{-108}}{2}}}=\sf{1 - \sqrt{108}i}=1-6\sqrt{3}i

Therefore, the roots of the given quadratic equations are (1+6√3i) and (1-6√3i) respectively.

Similar questions