Hindi, asked by radheymohanmishra844, 11 days ago

निबलों-----
मजबूत
कमजोर
कामचोर
अपाहिज​

Answers

Answered by snaaz9579
1

Answer:

Three numbers a,b,ca,b,c in each type of sequence.

\implies\boxed{a,b,c\text{ (A.P)}\iff b=\dfrac{a+c}{2}}⟹

a,b,c (A.P)⟺b=

2

a+c

\implies\boxed{a,b,c\text{ (G.P)}\iff b^{2}=ac}⟹

a,b,c (G.P)⟺b

2

=ac

\implies\boxed{a,b,c\text{ (H.P)}\iff b=\dfrac{2ac}{a+c}}⟹

a,b,c (H.P)⟺b=

a+c

2ac

\red{\bigstar}★ Properties of logarithms.

\implies\log ab=\log a+\log b⟹logab=loga+logb

\implies\log m^{n}=n\log m⟹logm

n

=nlogm

\implies\log_{a}b=\dfrac{\log b}{\log a}⟹log

a

b=

loga

logb

\large\underline{\text{Solution}}

Solution

Since a,b,ca,b,c are in G.P

\implies b^{2}=ac⟹b

2

=ac

Taking log on both sides

\implies\log b^{2}=\log ac⟹logb

2

=logac

By the first and second properties of logarithms

\implies 2\log b=\log a+\log c⟹2logb=loga+logc

So

\implies \log b=\dfrac{\log a+\log c}{2}⟹logb=

2

loga+logc

Hence

\implies\log a,\log b,\log c\text{ (A.P)}⟹loga,logb,logc (A.P)

Dividing by \log xlogx

\implies\dfrac{\log a}{\log x},\dfrac{\log b}{\log x},\dfrac{\log c}{\log x}\text{ (A.P)}⟹

logx

loga

,

logx

logb

,

logx

logc

(A.P)

According to the definition of H.P

\implies\dfrac{\log x}{\log a},\dfrac{\log x}{\log b},\dfrac{\log x}{\log c}\text{ (H.P)}⟹

loga

logx

,

logb

logx

,

logc

logx

(H.P)

By the third property of logarithms

\implies\log_{a}x,\log_{b}x,\log_{c}x\text{ (H.P)}⟹log

a

x,log

b

x,log

c

x (H.P)

Hence proven.

\large\underline{\text{Proof of the concept No.1}}

Proof of the concept No.1

The common difference in an A.P is equal.

\implies d\text{(common difference)}⟹d(common difference)

\implies d=a-b,d=b-c⟹d=a−b,d=b−c

\implies a-b=b-c⟹a−b=b−c

\implies 2b=a+c⟹2b=a+c

\implies b=\dfrac{a+c}{2}\text{ (Arithmetic mean)}⟹b=

2

a+c

(Arithmetic mean)

The common ratio in a G.P is equal.

\implies r\text{(common ratio)}⟹r(common ratio)

\implies r=\dfrac{a}{b},r=\dfrac{b}{c}⟹r=

b

a

,r=

c

b

\implies \dfrac{a}{b}=\dfrac{b}{c}⟹

b

a

=

c

b

\implies b^{2}=ac\text{ (Geometric mean)}⟹b

2

=ac (Geometric mean)

An H.P consists of reciprocals of an A.P.

\implies\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\text{ (A.P)}⟹

a

1

,

b

1

,

c

1

(A.P)

\implies \dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}⟹

b

2

=

a

1

+

c

1

\implies \dfrac{1}{b}=\dfrac{a+c}{2ac}⟹

b

1

=

2ac

a+c

\implies b=\dfrac{2ac}{a+c}\text{ (Harmonic mean)}⟹b=

a+c

2ac

(Harmonic mean)

\large\underline{\text{Additional information}}

Additional information

We can notice that each result is the A.M, G.M, and H.M. Thereby, we can use the concept of means for finding a term between the two.

Answered by nadeemrameez13
0

Answer:

ka bavasir lihk diabho hehehehehe

Similar questions