नि म्न पद्यांश पढ़कर पछू गए प्रश्नों केउत्तर लि खि ए l 5m
सुनकर बोली और -और
कठपतु लि यां कि हां,
बहुत दि न हुए
हमअपनेमन के छं द छूए
मगर ,
पहली कठपतु ली सोचनेलगी
ए कैसी इच्छा
मेरेमन मेंजगी?
1. यह पद कि स पाठ सेलि या गया है? कवि कौन हैं?
2. पहलेकठपतु ली की बात दूसरी कठपतु लि यां को अच्छा क्यों लगी ?
3. पहली कठपतु ली अब क्या सोचनेलगी ?
Answers
Answer:
But let’s find some less trivial examples of functions f:R→R that satisfy this functional equation.
Now, let’s choose any number x∈R , and try to fix f(x)=α≠1 . What does it tell us?
etc. And, as long as all those numbers are different, and different than 1, we’ll find no contradiction. We can easily make that happen by selecting a transcendental α .
We can go one step further, and define f(2kx)=α , for all k∈Z . Since α is transcendental, we can see that all numbers of the form 2aαbx are different, and all their images would have thus been fixed.
Now, if we define Sx={y∈R|∃a,b∈Z,y=2aαbx} , the Sx are classes of equivalence that partition R . Now, just pick one element of each of the classes (using the axiom of choice or otherwise), and define that f(2kx)=α for all of those x , and all k∈Z . That defines f uniquely and consistently in all R .