Math, asked by hindavi82, 11 months ago

निम्न रैखिक समीकरण युग्म को प्रतिस्थापन विधि से हल कीजिए :
\LARGE\sf\frac{3x}{2} - \sf\frac{5y}{3} = -2
\LARGE\sf\frac{x}{3} + \large\sf\frac{y}{2} = \LARGE\sf\frac{13}{6}

Answers

Answered by Anonymous
0

Step-by-step explanation:

x=2

y=3

MARK as BRAINLIEST please

Answered by Anonymous
21

\huge\underline\frak{\fbox{AnSwEr :-}}

\implies\large\underline\mathtt{\fbox{x = 2}}

\implies\large\underline\mathtt{\fbox{y = 3}}

Step-by-step explanation:

हमारे पास है ,

\implies \large\sf\frac{3x}{2} - \frac{5y}{3} = -2.................(i)

\implies \large\sf\frac{x}{3} + \frac{y}{2} = \frac{13}{6} ................(ii)

समीकरण ( ii ) से

\implies \large\sf\frac{x}{3} =\frac{13}{6} - \frac{y}{2}

\implies \large\sf\ x = 3[\frac{13}{6} - \frac{-y}{2}]

इस मान को समीकरण ( i ) में रखने पर , में प्राप्त होता है ,

\implies \large\sf\frac{3}{2}[{3(\frac{13}{6}} - \frac{y}{2})] - \frac{5}{3}y = -2

\implies \large\sf\frac{9}{2}[\frac{13}{2} - \frac{y}{2}] - \frac{5}{3} = -2

\implies \large\sf{27}(\frac{13}{6} - \frac{y}{2}) -10 = 12

\implies \large\sf\frac{351}{6} - \frac{27}{2}y = -10 = -12

\implies \large\sf\frac{27}{2}y = \frac{423}{6}

\implies \large\underline\mathtt\red{\fbox{y = 3}}

y का मान समीकरण ( 1 ) में रखने पर , हमें प्राप्त होता है ,

\implies \large\sf\frac{3x}{2} - \frac{5 \times 3}{3} = -2

\implies \large\sf\frac{3x}{2} = -2 + \frac{15}{3}

\implies \large\sf\frac{3x}{2} = -2 + 5

\implies \large\sf\frac{3x}{2} = 3

\implies \large\underline\mathtt\red{\fbox{x = 2}}

\implies x = 2 and y = 3

Similar questions