Math, asked by PragyaTbia, 1 year ago

निम्नलिखित फलनों के अवकलन ज्ञात कीजिए (यह समझा जाय कि a, b, c, d,p, q, r और s निशिचत शून्येतर अचर हैं m तथा n पूर्णांक हैंl ) : (x + \cos x)(x - \tan x)

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

(x + \cos x)(x - \tan x)

माना कि  

y=(x + \cos x)(x - \tan x)

अवकलन करने पर -

\frac{dy}{dx}=(x+cosx)\frac{d}{dx}(x-tanx)+(x-tanx)\frac{d}{dx}(x+cosx)\\\\\frac{dy}{dx}=(x+cosx)(1-sec^2x)+(x-tanx)(1-sinx)\\\\\frac{dy}{dx}=(x+cosx)(-tan^2x)+(x-tanx)(1-sinx)\\\\\frac{dy}{dx}=-tan^2x(x+cosx)+(x-tanx)(1-sinx)

Answered by dreamgirl30
0

Answer:

Answer:

Step-by-step explanation:

(x + \cos x)(x - \tan x)(x+cosx)(x−tanx)

माना कि

y=(x + \cos x)(x - \tan x)y=(x+cosx)(x−tanx)

अवकलन करने पर -

\begin{gathered}\frac{dy}{dx}=(x+cosx)\frac{d}{dx}(x-tanx)+(x-tanx)\frac{d}{dx}(x+cosx)\\\\\frac{dy}{dx}=(x+cosx)(1-sec^2x)+(x-tanx)(1-sinx)\\\\\frac{dy}{dx}=(x+cosx)(-tan^2x)+(x-tanx)(1-sinx)\\\\\frac{dy}{dx}=-tan^2x(x+cosx)+(x-tanx)(1-sinx)\end{gathered}

dx

dy

=(x+cosx)

dx

d

(x−tanx)+(x−tanx)

dx

d

(x+cosx)

dx

dy

=(x+cosx)(1−sec

2

x)+(x−tanx)(1−sinx)

dx

dy

=(x+cosx)(−tan

2

x)+(x−tanx)(1−sinx)

dx

dy

=−tan

2

x(x+cosx)+(x−tanx)(1−sinx)

Similar questions