Math, asked by PragyaTbia, 1 year ago

निम्नलिखित को सिद्ध कीजिए: \sin^2 {6x} - \sin^2 {4x} = \sin 2x\,\sin 10x

Answers

Answered by Bhasksr
0

please mark me brainliest

Attachments:
Answered by kaushalinspire
1

Answer:

Step-by-step explanation:

sin^{2}6x - sin^{2}4x  =  sin2x . sin10x

L.H.S.  =  sin^{2}6x - sin^{2}4x

           =  ( sin6x + sin4x ) ( sin6x - sin4x )

                 [ ∵ a^{2} - b^{2}  = (a+b) (a-b) ]

         

         =   ( sin6x + sin4x ) ( sin6x - sin4x )

          (sinA - sinB = 2cos\frac{A+B}{2} sin\frac{A-B}{2})

         (sinA + sinB =2sin\frac{A+B}{2} cos\frac{A-B}{2})

          = 2sin(\frac{6x+4x}{2}) cos(\frac{6x-4x}{2}). 2cos\frac{6x+4x}{2} sin\frac{6x-4x}{2}

          =  ( 2 sin5x . cosx ) ( 2 cos5x . sinx )

          =  ( 2 sin5x cos5x ) ( 2 sinx cosx )

         =  sin10x . sin2x

          [ ∵ 2 sinx cosx = sin2x ]

          =  R.H.S.

L.H.S.  =  R.H.S.

Similar questions