निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए:
Answers
Answered by
3
Answer:
Step-by-step explanation:
प्रश्नानुसार
sin2x + cosx = 0
या 2 sinx cosx + cosx = 0 [ ∵ sin2x = 2 sinx cosx]
या cosx [ 2 sinx + 1 ] = 0
अतः या तो cosx = 0 या 2 sinx + 1 = 0
⇒ cosx = 0 या sinx =
⇒ cosx = 0 या sinx =
⇒ cosx = 0 या sinx =
अतः
या
,n∈Z
अतः व्यापक हल x = ( 2x+1 )
या , n∈Z
Answered by
1
Step-by-step explanation:
sin 2x + cos x= 0
2 sinx cos x+ cos x=0
cos x( 2 sinx+1)=0
cos x=0
और हम लिख सकते हैं
2 sin x+1=0
अब
cos x=0
cos x= ( 2n+1 )π/2, जहाँ n∈Z
अब
2 sin x+1=0
sin x= -1/2 = - sin π/6 = sin(π+π/6) = sin (π+π/6)= sin 7π/6
x = nπ + (-1)^n 7π/6, जहाँ n ∈ Z
Similar questions
Science,
7 months ago
Math,
7 months ago
Accountancy,
7 months ago
Math,
1 year ago
Math,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago