Math, asked by Sureshwandhnam, 1 year ago

निम्नलिखित परिमेय व्यंजक का गुणनफल ज्ञात कीजिए तथा उनके निम्नतम रूप में व्यक्त कीजिए

 \frac{ax -  {x}^{2} }{a {}^{2} + 2ax +  {x}^{2}  }  \:  \frac{ {a}^{2} + ax }{ {a}^{2} - 2ax +  {x}^{2}  }

Answers

Answered by Swarnimkumar22
0
हल-

युग्मो का गुणनफल =  \frac{ax - {x}^{2} }{a {}^{2} + 2ax + {x}^{2} } \: \frac{ {a}^{2} + ax }{ {a}^{2} - 2ax + {x}^{2} }


 \frac{x(a - x)}{( {a + x)}^{2} }  \times  \frac{a(a + x)}{(a - x) {}^{2} }  \\  \\  =  \frac{a  x}{(a + x)(a - x)}  \\  \\  =  \frac{ax}{ {a}^{2}   -  {x}^{2} }

अतः अभीष्ट गुणनफल का निम्नतम रूप

 =  \frac{ax}{ {a}^{2} -  {x}^{2}  }
Answered by MonarkSingh
3
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!!!}}}

<b>
Here is your answer.
 \frac{ax - x {}^{2} }{a {}^{2} + 2ax + x {}^{2}  }  \times  \frac{a {}^{2} + ax }{a {}^{2} - 2ax + x {}^{2}  }  \\  = \frac{x(a - x)}{(a + x) {}^{2} }  \times  \frac{a(a + x)}{(a - x) {}^{2} }  \\  =  \frac{ax}{(a + x)(a - x)}  \\  =  \frac{ax}{a {}^{2} - x {}^{2}  }
\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:ut\: helps\: you}}}}}}}}}}}}}}}
Similar questions