Math, asked by Dhruvchandoliya6040, 1 year ago

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यूनकोण है :

(i) (cosec θ - cot θ)2 = 1-cos θ / 1+cos θ
(ii) cos A/1+sin A + 1+sin A/cos A =2sec A
(iii) _tan θ/ 1-cotθ + cot θ/ 1-tanθ = 1 + sec θ cosec θ
(iv)1+secA/ sec A = sin2 A/ 1-cosA
(v) सर्वसमिका cosec2 A= 1+ cot2 A को लागू करके
cos A - sin A +1/cos A + sin A - 1 = cosec A + cot A
(vi) √1+ sinA/1- sinA =secA+tanA
(vii) sin θ - 2 sin3 θ/2 cos3 θ - cos θ = tanθ
(viii) (sin A+ cosec A)2+ (cos A+ sec A)2 = 7+ tan2A+cot2A
(ix) (cosec A - sin A)(sec A - cos A) = 1/ tan A + cot A
(x) (1+tan2 A/1+cot2 A) = (1 - tan A/ 1 - cot A) = tan2A

Answers

Answered by nikitasingh79
7

Answer with Step-by-step explanation:

(i) दिया है :  

(cosec θ - cot θ)² = (1-cos θ)/(1+cos θ)  

L.H.S. = (cosec θ - cot θ)²            

= (cosec²θ + cot²θ - 2cosec θ cot θ)            

[(a + b)² = a² + b² + 2ab]

= (1/sin²θ + cos²θ/sin²θ - 2 × 1/sinθ × cos θ/sinθ)      

= (1/sin²θ + cos²θ/sin²θ - 2 ×cos θ/sin²θ)      

= (1 + cos²θ)/sin²θ - 2 × cos θ/sin²θ)      

= [ (1 + cos²θ) - 2 × cos θ] /sin²θ

= (1 + cos²θ - 2cos θ)/(1 - cos²θ)            

= (1- cos θ)²/(1 - cosθ)(1+ cos θ)        

[a² + b² - 2ab = (a - b)² ,  a² - b² = (a + b) (a- b) ]

= (1 - cos θ)/(1 + cos θ)  

= R.H.S.

 

(ii) दिया है:  

cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A  

L.H.S. = cos A/(1+sin A) + (1+sin A)/cos A            

= [cos²A + (1+sin A)²]/(1+sin A)cos A            

= [cos²A +(sin²A + 1 + 2sin A)]/(1+ sin A)cos A            

[(a + b)² = a² + b² + 2ab]

= (1 + 1 + 2sin A)/(1+sin A)cos A            

= (2+ 2sin A)/(1+sin A)cos A            

= 2(1+sin A)/(1+sin A)cos A            

= 2/cos A  

= 2 sec A  

= R.H.S.

 

(iii) दिया है :  

tan θ/(1-cot θ) + cotθ/(1-tan θ)  = 1 + sec θ cosec θ

L.H.S. = tan θ/(1 - cot θ) + cot θ/(1 - tan θ)            

= [(sin θ/cos θ)/1 - (cos θ/sin θ)] + [(cos θ/sin θ)/1 - (sin θ/cos θ)]            

= [(sin θ/cos θ)/(sin θ - cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ - sin θ)/cos θ]             = sin²θ/[cos θ(sin θ -  cos θ)] + cos²θ/[sin θ(cos θ - sin θ)]          

= sin²θ/[cos θ(sin θ - cos θ)] - cos²θ/[sin θ(sin θ - cos θ)]          

= 1/(sin θ-cos θ) [(sin²θ/cos θ) - (cos²θ/sin θ)]            

= 1/(sin θ-cos θ) × [(sin³θ - cos³θ)/sin θ cos θ]            

= [(sin θ - cos θ)(sin²θ + cos²θ + sin θ cos θ)]/[(sin θ - cos θ)sin θ cos θ]  

[(a³ + b³) = (a + b) (a² + b² + ab]

 = (1 + sin θ cos θ)/sin θ cos θ            

= 1/sin θ cos θ + 1            

= 1 + sec θ cosec θ  

= R.H.S.

 

(iv) दिया है :  

(1 + sec A)/sec A = sin²A/(1-cos A)  

L.H.S. = (1 + sec A)/sec A            

= (1 + 1/cos A)/1/cos A            

= (cos A + 1)/cos A/1/cos A            

= cos A + 1  

R.H.S. = sin2A/(1-cos A)            

= (1 - cos2A)/(1-cos A)            

= (1-cos A)(1+cos A)/(1-cos A)            

= cos A + 1  

L.H.S. = R.H.S.

 

 

(v) दिया है :  (cos A – sin A + 1)/ (cos A + sin A - 1) = cosec A + cot A

LHS:

(cos A – sin A + 1)/ (cos A + sin A - 1)  

= {(cos A – sin A + 1)/sin A}/{(cos A + sin A - 1)/sin A}          

[हर और अंश को sin A से भाग करने पर]

= {(cos A/sin A – sin A/sin A + 1/sin A)}/{(cos A/sin A + sin A/sin A - 1/sin A)}

= (cot A – 1 + cosec A)/ (cot A + 1 - cosec A)

= {cot A + cosec A - 1 }/ (cot A + 1 - cosec A)

= [cot A + cosec A -  (cosec² A - cot²A)]/ (cot A + 1 - cosec A)

[1 = cosec² A - cot2 A]

= (cot A + cosec A) - [(cosec A - cot A) (cosec A + cot A)]/ (cot A + 1 - cosec A)

[a² - b² = (a +b) (a - b)]

= (cosec A + cot A) [(1 - cosec A + cot A)]/ (cot A + 1 - cosec A)

= cosec A + cot A

= RHS

 

(vi) दिया है : √[(1 + sin A)/(1 – sin A)] = sec A + tan A  

LHS:

√[(1 + sin A)/(1 – sin A)]  

= √[(1 + sin A) ×  (1 + sin A)] / [(1 -  sin A)×  (1 + sin A)]

[अंश और हर को (1 + sin A) से गुणा करने पर]

= √[(1 + sin A)² /(1 – sin² A)]

= √[(1 + sin A)²/cos² A]

[ (1 – sin² A) = cos² A]

= (1 + sin A)/cos A

= 1/cos A + sin A/cos A

= sec A + tan A

= RHS

 

 

(vii) दिया है :  

(sin θ - 2sin³θ)/(2cos³θ-cos θ) = tan θ  

L.H.S. = (sin θ - 2sin³θ)/(2cos³θ - cos θ)            

= [sin θ(1 - 2sin²θ)]/[cos θ(2cos²θ - 1)]            

= sin θ[1 - 2(1- cos²θ)]/[cos θ(2cos²θ - 1)]    

[ (sin² A = 1 - cos² A]

= [sin θ(2cos²θ -1)]/[cos θ(2cos²θ -1)]        

= sin θ/cos θ

= tan θ  

= R.H.S.

 

(viii) दिया है :  

(sin A + cosec A)²+ (cos A + sec A)² = 7+ tan²A + cot²A  

L.H.S. = (sin A + cosec A)²+ (cos A + sec A)²

= (sin²A + cosec²A + 2 sin A cosec A) + (cos²A + sec²A + 2 cos A sec A)      

[(a +b)² = a² + b² + 2ab]      

= (sin²A + cos²A + 2 sin A cosec A) + (cosec²A + sec²A + 2 cos A sec A)    

= (sin²A + cos²A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan²A + 1 + cot²A       [sin²A + cos²A = 1 , cosecA = 1/sinA , secA = 1/cosA, cosec²A = 1 + cot²A ,sec²A = 1 + tan²A ]      

= 1 + 2 + 2 + 2 + tan²A + cot²A            

= 7 + tan²A + cot²A  

= R.H.S.

 

 

 

(ix) दिया है :  

(cosec A – sin A)(sec A – cos A)  = 1/(tan A + cotA)

L.H.S. = (cosec A – sin A)(sec A – cos A)            

= (1/sin A - sin A)(1/cos A - cos A)    

[ cosecA = 1/sinA , secA = 1/cosA]        

= [(1 - sin²A)/sin A][(1 - cos²A)/cos A]          

= (cos²A/sin A) × (sin²A/cos A)        

[(1 – sin² A) = cos² A, (1 – cos² A) = sin² A]

= cos A sin A  

 

R.H.S. = 1/(tan A + cotA)            

= 1/(sin A/cos A + cos A/sin A)            

= 1/[(sin²A + cos²A)/sin A cos A]        

=  1/1/(sin A cos A)

[(sin²A + cos²A) = 1]

= 1 × (sin A cos A)

= cos A sin A  

L.H.S.= R.H.S.

 

(x) दिया है :  

(1 + tan²A/1 + cot²A)   = (1 - tanA /1 - cotA)² = tan²A

L.H.S. = (1 + tan²A/1 + cot²A)

= (1 + tan²A /1 + 1/tan²A)            

= 1 + tan²A/[(1 + tan²A)/tan²A]            

= tan²A

 

[(1 - tan A)/(1 - cot A)]²

= [(1 - sin A/cos A)/(1 - cos A/sin A)]²

= [{(cos A - sin A)/cos A} /{(sin A - cos A)/sin A)}]²

= [{(cos A - sin A)/cos A} × {sin A/(sin A - cos A)/sin A}]²

= [-{(sin A - cos A)/cos A} × {sin A/(sin A - cos A)/sin A}]²

= (-sin A/cos A)²

= sin² A/cos² A

= tan² A

 आशा है कि यह उत्तर आपकी अवश्य मदद करेगा।।।।

 

 इस पाठ से संबंधित कुछ और प्रश्न :  

मान निकालिए :

(i) sin2 63° +sin2 27° / cos 17° +cos2 73°

(ii) sin 25° cos 65° + cos 25° sin 65°

https://brainly.in/question/12659823

Similar questions