Name all the allotrops of carbon and write their uses
Answer it correct I will mark U brainliest
Answers
Answer:
Allotropes of carbon
Two allotropes of carbon: graphite and diamond.
Eight allotropes of carbon:
a) diamond
b) graphite
c) lonsdaleite
d) C60 buckminsterfullerene
e) C540, Fullerite
f) C70, g) amorphous carbon
h) zig-zag single-walled carbon nanotube.
i)Computer models of stable nanobud structures.
j)A large sample of glassy carbon.
Allotropes of CarbonAllotropes of carbon: a) Diamond, b) Graphite, c) Lonsdaleite, d) C60 (Buckminsterfullerene or buckyball), e) C540, f) C70, g) Amorphous carbon, and h) single-walled carbon nanotube, or buckytube.
Diamond
Diamond is probably the most well known carbon allotrope. The carbon atoms are arranged in a lattice, which is a variation of the face-centered cubic crystal structure. It has superlative physical qualities, most of which originate from the strong covalent bonding between its atoms.
Graphite
Graphite is another allotrope of carbon; unlike diamond, it is an electrical conductor and a semi-metal. Graphite is the most stable form of carbon under standard conditions and is used in thermochemistry as the standard state for defining the heat of formation of carbon compounds. There are three types of natural graphite:
Crystalline flake graphite: isolated, flat, plate-like particles with hexagonal edges
Amorphous graphite: fine particles, the result of thermal metamorphism of coal; sometimes called meta-anthracite
Lump or vein graphite: occurs in fissure veins or fractures, appears as growths of fibrous or acicular crystalline
Amorphous Carbon
Amorphous carbon refers to carbon that does not have a crystalline structure. Even though amorphous carbon can be manufactured, there still exist some microscopic crystals of graphite-like or diamond-like carbon. The properties of amorphous carbon depend on the ratio of sp2 to sp3 hybridized bonds present in the material.
Fullerenes and Nanotubes
Carbon nanomaterials make up another class of carbon allotropes. Fullerenes (also called buckyballs) are molecules of varying sizes composed entirely of carbon that take on the form of hollow spheres, ellipsoids, or tubes.
Glassy Carbon
Glassy or vitreous carbon is a class of carbon widely used as an electrode material in electrochemistry as well as in prosthetic devices and high-temperature crucibles. Its most important properties are high temperature resistance, hardness, low density, low electrical resistance, low friction, low thermal resistance, extreme resistance to chemical attack, and impermeability to gases and liquids.
Other Allotropes
Other allotropes of carbon include carbon nanofoam, which is a low-density cluster assembly of carbon atoms strung together in a loose three-dimensional web; pure atomic and diatomic carbon; and linear acetylenic carbon, which is a one-dimensional carbon polymer with the structure -(C:::C)n-.