name the country which dominated the international market for fine textiles till the eighteenth century?
Answers
Answered by
1
Answer:
INDIA
Explanation:
m = (cos∅ - sin∅)
n = (cos∅ + sin∅)
\begin{lgathered}LHS = \sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}} \\ \\ = \frac{ \sqrt{m} }{ \sqrt{n} } + \frac{ \sqrt{n} }{ \sqrt{m} } \\ \\ = \frac{m + n}{ \sqrt{mn} } \\\end{lgathered}
LHS=
n
m
+
m
n
=
n
m
+
m
n
=
mn
m+n
now, put m =( cos∅ - sin∅) and n = (cos∅ + sin∅)
= {(cos∅ - sin∅)+(cos∅ + sin∅)}/√{cos∅-sin∅)(cos∅+sin∅)}
= 2cos∅/√{cos²∅ - sin²∅}
= 2/√{cos²∅/cos²∅ - sin²∅/cos²∅}
= 2/√{1 - tan²∅} = RHS
Answered by
2
Answer:
India dominated the international market for fine textiles till the eighteenth century.
Similar questions
English,
6 months ago
English,
6 months ago
English,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago