Math, asked by jeetusingh203, 8 months ago


Name the pair
af angles c and b​

Answers

Answered by shreelatabhujel
5

Step-by-step explanation:

please give me my favourite heart..

where is the question..

Answered by parthsharma777210c
0

Answer:

ANSWER

ANSWERLet the apparently visible angles be a, b, c & d.

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) and

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) and

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) and

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) andfor d⟶(c,d), (d, b+c), (d, a+b+c) and

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) andfor d⟶(c,d), (d, b+c), (d, a+b+c) and(a+b), (c+d).

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) andfor d⟶(c,d), (d, b+c), (d, a+b+c) and(a+b), (c+d).Omitting one of the terms which come twice we have

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) andfor d⟶(c,d), (d, b+c), (d, a+b+c) and(a+b), (c+d).Omitting one of the terms which come twice we have(a, b+c), (a, b+c+d), (a,b), (b, c+d), (b,c) (c, b+a), (c,d) (d, b+c),

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) andfor d⟶(c,d), (d, b+c), (d, a+b+c) and(a+b), (c+d).Omitting one of the terms which come twice we have(a, b+c), (a, b+c+d), (a,b), (b, c+d), (b,c) (c, b+a), (c,d) (d, b+c),(d, a+b+c), (a+b, c+d) .

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) andfor d⟶(c,d), (d, b+c), (d, a+b+c) and(a+b), (c+d).Omitting one of the terms which come twice we have(a, b+c), (a, b+c+d), (a,b), (b, c+d), (b,c) (c, b+a), (c,d) (d, b+c),(d, a+b+c), (a+b, c+d) .So the total number of the pairs of adjacent angles=10.

ANSWERLet the apparently visible angles be a, b, c & d.Each angle has 3 adjacent angles.The combinations are,for a⟶(a,b), (a, b+c), (a, b+c+d) andfor b⟶(a,b), (b,c), (b, c+d) andfor c⟶(b,c), (c, a+b), (c,d) andfor d⟶(c,d), (d, b+c), (d, a+b+c) and(a+b), (c+d).Omitting one of the terms which come twice we have(a, b+c), (a, b+c+d), (a,b), (b, c+d), (b,c) (c, b+a), (c,d) (d, b+c),(d, a+b+c), (a+b, c+d) .So the total number of the pairs of adjacent angles=10.Ans- Option D.

Similar questions