Math, asked by sreelekhayannam, 4 months ago

Name the type of quadrilateral formed, if any, by the following points, and give reasons for
your answer
(-3,5), (1,10),(3,1),(-1,-4)

Answers

Answered by lekshmipshine
0

Answer:

Step-by-step explanation:

(i) Let the given points are A(−1,−2), B(1,0), C(−1,2)and D(−3,0) Then,

AB=  

(1+1)  

2

+(0+2)  

2

 

​  

=  

2  

2

+2  

2

 

​  

=  

4+4

​  

=  

8

​  

 

BC=  

(−1−1)  

2

+(2−0)  

2

 

​  

=  

(2  

2

+2  

2

)

​  

=  

4+4

​  

=  

8

​  

 

CD=  

((−3)−(−1))  

2

+(0−2)  

2

 

​  

=  

2  

2

+(−2)  

2

 

​  

=  

4+4

​  

=  

8

​  

 

DA=  

(−3)−(−1))  

2

+(0−(−2))  

2

 

​  

=  

(−2)  

2

+2  

2

 

​  

=  

4+4

​  

=  

8

​  

 

AC  

((−1)−(−1))  

2

+(2−(−2))  

2

 

​  

=  

0+4  

2

 

​  

=  

16

​  

=4

BD=  

(−3−1)  

2

+(0−0)  

2

 

​  

=  

−4  

2

 

​  

=  

16

​  

=4

Since the four sides AB,BC,CD and DA are equal  and the diagonals AC and BD are equal .

∴ Quadrilateral  ABCD is a square.

(ii)Let the given points are A(−3,5),B(3,1),C(0,3) and D(−1,−4)Then

AB=  

(−3−3)  

2

+(5−1)  

2

 

​  

=  

(−6)  

2

+4  

2

 

​  

=  

36+16

​  

=  

52

​  

 

BC=  

(3−0)  

2

+(1−3)  

2

 

​  

=  

(3  

2

+(−2)2  

2

)

​  

=  

9+4

​  

=  

11

​  

 

CD=  

(0−(−1))  

2

+(3−(−4))  

2

 

​  

=  

1  

2

+(7)  

2

 

​  

=  

1+49

​  

=  

50

​  

 

DA=  

(−1)−(−3))  

2

+((−4)−5))  

2

 

​  

=  

(2)  

2

+(−9)  

2

 

​  

=  

4+81

​  

=  

85

​  

 

Here AB

=BC

=CD

=DA

∴ it is a quadrilateral.

(iii)Let the given points are A(4,5),B(7,6),C(4,3) and D(1,2)Then

AB=  

(7−4)  

2

+(6−5)  

2

 

​  

=  

3  

2

+1  

2

 

​  

=  

9+1

​  

=  

10

​  

 

BC=  

(4−7)  

2

+(3−6)  

2

 

​  

=  

((−3)  

2

+(−3)  

2

)

​  

=  

9+9

​  

=  

18

​  

 

CD=  

(1−4)  

2

+(2−3)  

2

 

​  

=  

(−3)  

2

+(−1)  

2

 

​  

=  

9+1

​  

=  

10

​  

 

DA=  

(1−4)  

2

+(2−5)  

2

 

​  

=  

(−3)  

2

+(−3)  

2

 

​  

=  

9+9

​  

=  

18

​  

 

AC  

(4−4)  

2

+(3−5)  

2

 

​  

=  

0+(−2)  

2

 

​  

=  

4

​  

=2

BD=  

(1−7)  

2

+(2−6)  

2

 

​  

=  

(−6)  

2

+(−4)  

2

 

​  

=  

36+16

​  

=  

52

​  

 

Here AB=CD,BC=DA . But AC

=BD

Hence the pairs of opposite sides are equal but diagonal are not equal so it is a parallelogram.

Answered by iwana090607
1

Types of quadrilaterals and their conditions:

Parallelogram:

In parallelogram both pairs of opposite sides are equal.Diagonals bisect each other.

Rectangle:

In rectangle diagonals are equal.Diagonal bisect each other.Opposite sides are equal.

Rhombus:

In Rhombus all the sides are equal.Diagonals bisect each other at right angle.Diagonals are not equal.

Square:

In square all sides are equal.Diagonals are equal.Diagonals bisect each other at right angle.

Similar questions