Math, asked by Anonymous, 3 months ago


Narendra sells two cookers for 2574 each. On one he gains 10% and on the other he loses 10%
Find his gain or loss per cent in the whole transaction.​

Answers

Answered by Anonymous
9

Given:

  • Narendra sells two cookers for 2574 each. On one he gains 10% and on the other he loses 10%.

To Find:

  • His gain or loss per cent in the whole transaction.

Formulas used:

  • \bf \: C.P. \:  =  \bigg(  \dfrac{S.P. \times 100}{100 \:  + \: gain\% }  \bigg)

  • \bf \: C.P. \:  =  \bigg(  \dfrac{S.P. \times 100}{100 \:   -    \: loss\% }  \bigg)

  • \bf \: Loss  =   \bigg(\dfrac{Loss }{ Cost  \: price}   \bigg)\times 100\%

______________________________________

First Cooker:

S.P. = ₹ 2574 and gain% = 10%

\therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: C.P. \:  =  \bigg(  \dfrac{S.P. \times 100}{100 \:  + \: gain\% }  \bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= ₹ \:  \bigg( \dfrac{2574 \times 100}{100 + 10}  \bigg) \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf=  \: ₹ \:  \bigg( \dfrac{2574 \times 10 \cancel0}{11 \cancel0}  \bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= ₹ \:  \bigg( \dfrac{2574 \times 10}{11}  \bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= ₹ \:  \bigg( \dfrac{ \cancel{2574 0}}{{ \cancel{1 1}}}  \bigg) \\  \\     \:  \:  \:  \:  \:  \: \sf= ₹ { \underline{ \boxed{ \bf{ \bigstar{ \pink{2340}}}}}}

______________________________________

Second Cooker:

S.P. = ₹ 2574 and loss% = 10%

\therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: C.P. \:  =  \bigg(  \dfrac{S.P. \times 100}{100 \:  - \: loss\% }  \bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= ₹ \:  \bigg( \dfrac{2574 \times 100}{100 - 10}  \bigg) \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf=  \: ₹ \:  \bigg( \dfrac{2574 \times 10 \cancel0}{9 \cancel0}  \bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= ₹ \:  \bigg( \dfrac{2574 \times 10}{9}  \bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= ₹ \:  \bigg( \dfrac{ \cancel{2574 0}}{{ \cancel{9}}}  \bigg) \\  \\     \:  \:  \:  \:  \:  \: \sf= ₹ { \underline{ \boxed{ \bf{ \bigstar{ \pink{2860}}}}}}

______________________________________

Hence, Total cost price of two cookers:

  • ₹ (2340 + 2860) = ₹ 5200

Total selling price of two cookers:

  • ₹ (2574 × 2) = ₹ 5148

Since, C.P. > S.P., There is a loss.

  • Loss = ₹ (5200 - 5148) = ₹ 52

⠀So,

\sf \: \:  \:  \:  \:  \:  Loss  =   \bigg(\dfrac{Loss }{ Cost  \: price}   \bigg)\times 100\% \\  \\ \sf \:   Loss  =   \bigg(\dfrac{52 }{ 5200}   \bigg)\times 100\% \\  \\  \sf \:  \therefore \: Loss  =   \bigg(\dfrac{52 }{ 52 \cancel{00}  } \bigg)\times 1 \cancel{00}\%  =  1\%

⠀⠀Hence, Loss percent is 1%

Similar questions