Math, asked by wwwjpy, 1 year ago

nationalism under root 3 + 1 upon under root 3 minus 1 equal to a + b under root 3

Answers

Answered by Anonymous
8
Hey


The question is :-

 \sqrt{3}   + 1  \div  \sqrt{3} - 1 = a + b \sqrt{3}

 =   >  (\sqrt{3}  + 1)( \sqrt{ 3}  + 1) \div ( \sqrt{3}  - 1)( \sqrt{3}  + 1) = a + b \sqrt{3}

 =  >   { (\sqrt{3} + 1 )}^{2}    \div ( { \sqrt{3} }^{2} ) - ( {1}^{2} ) = a + b \sqrt{3}

 =  > 3 + 1 + 2 \sqrt{3}  \div 3 - 1 = a + b \sqrt{3}

 =  > 4 + 2 \sqrt{3}  \div 2 = a + b \sqrt{3}

 =  > 2(2 +  \sqrt{3} ) \div 2 = a + b \sqrt{3}

 =  > 2 +  \sqrt{3}  = a + b \sqrt{3}
By comparing both terms ,
we get
a = 2 and
b \sqrt{3}  =  \sqrt{3}
So , b = 1


thanks :)

Keep loving , keep smiling !!
Answered by ComplicatedLife
4
Hey fab ,

The question is :-

√3 + 1 / √3 - 1 = a + b√3

=> ( √3 + 1 )( √3 + 1 ) / ( √3 - 1 ) ( √3 + 1 ) = a + b√3
=> ( √3 + 1 ) ² / ( √3 ) ² - 1 = a + b√3
=> 3 + 1 + 2√3 / 3 - 1 = a + b√3
=> 4 + 2√3 / 2 = a + b √3
=> 2 ( 2 + √3 ) / 2 = a + b √3
=> 2 + √3 = a + b√3 .

By comparing both sides , we get ,

a = 2
and b√3 = √3
=> b = 1 .


Complicated Life :(
Similar questions