Math, asked by bhadoriaansh, 9 months ago

Natural numbers p, q, r, s are such that if α, β are the roots of x2 – px + q = 0 then (α+1/β) and (β+1/α) are the roots of x2 – rx + s = 0. What is the possible value of s? Answer:

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathrm{\alpha\;\&\;\beta\;are\;roots\;of\;x^2-p\,x+q=0\;and}

\mathrm{\dfrac{\alpha+1}{\beta}\;\&\;\dfrac{\beta+1}{\alpha}\;are\;roots\;of\;x^2-r\,x+s=0}

\underline{\textbf{To find:}}

\text{The value of 's'}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\mathrm{If\;\alpha\;\&\;\beta\;are\;roots\;ax^2+bx=c=0,\;then}

\mathrm{\alpha+\beta=\dfrac{-b}{a}\;\;\&\;\;\alpha\beta=\dfrac{c}{a}}

\mathrm{Since\;\alpha\;\&\;\beta\;are\;roots\;of\;x^2-p\,x+q=0,}

\mathrm{\alpha+\beta=p\;\;\&\;\;\alpha\beta=q}

\mathrm{Since\;\dfrac{\alpha+1}{\beta}\;\&\;\dfrac{\beta+1}{\alpha}\;are\;roots\;of\;x^2-r\,x+s=0}

\mathrm{Product\;of\;roots=s}

\mathrm{\dfrac{\alpha+1}{\beta}{\times}\dfrac{\beta+1}{\alpha}=s}

\mathrm{\dfrac{\alpha\beta+\alpha+\beta+1}{\alpha\beta}=s}

\mathrm{\dfrac{q+p+1}{q}=s}

\implies\boxed{\mathrm{\bf\,s=\dfrac{p+q+1}{q}}}

\underline{\textbf{Find more:}}

if α & β are the zeros of the quadratic polynomial p(x)= 3X²-6x+4,find the value of α\β+β+α+2(1/α+1/β)+3αβ​

https://brainly.in/question/18209208  

Similar questions