Chemistry, asked by noddy02, 9 months ago

Naturally occurring gold crystallises in FCC structure and has a density of 19.3 g/cm ^3 .Find atomic radius of gold (Au= 197 g)

answer it as early as possible
don't answer I don't know​

Answers

Answered by Anonymous
51

Answer:

  • Density of Gold = 19.3 g/cm³
  • Atomic Mass of Gold = 197 g
  • Type of Crystal Structure = FCC
  • Avogadro Number (N) = 6.022 × 10²³

The Number of atoms in the unit cell of a face centred cubic structure :

(z)=\sf\dfrac{1}{8}\times8+6\times\dfrac{1}{2}=4

\rule{100}{1}

\underline{\bigstar\:\textbf{According to the Question :}}

:\implies{\sf Density} =\dfrac{z \sf M}{ \sf Na^3}\\\\\\:\implies{\sf a^3}=\dfrac{z \sf M}{ \sf Density \times N}\\\\\\:\implies\sf a^3=\dfrac{4 \times 197g}{19.3 g\:cm^{-3} \times 6.022 \times 10^{23}}\\\\\\:\implies\sf a^3 = 6.78 \times 10^{ - 23}\\\\\\:\implies\sf a^3 = 67.8 \times 10^{ - 24}\\\\\\:\implies\sf a = \sqrt[3]{67.8 \times 10^{ - 24}}\\\\\\:\implies\sf a = 4.08 \times 10^{ - 8}\:cm

\rule{180}{2}

\underline{\bigstar\:\textbf{For FCC :}}

\dashrightarrow\sf\:\:r=\dfrac{a}{\sqrt{8}}\\\\\\\dashrightarrow\sf\:\:r=\dfrac{4.08 \times 10^{ - 8}\:cm}{\sqrt{8}}\\\\\\\dashrightarrow\sf\:\:r = 1.44 \times 10^{ - 8}\:cm\\\\\\\dashrightarrow\sf\:\:r = 144 \times 10^{ - 10}\:cm\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf r = 144\:pm}}

\therefore\:\underline{\textsf{The atomic radius of gold is \textbf{144 pm}.}}

Answered by CunningKing
7

GIVEN :-

Atomic mass of Gold(M) = 197 g

Density of Gold(d) = 19.3 g/cm³

Unit cell structure of gold = FCC

TO FIND :-

The atomic radius of Gold(Au).

ACKNOWLEDGEMENT :-

The value of Avogadro's constant(N) = 6.022 × 10²³

FCC crystal structure 4 atoms/unit cell.

FORMULA TO BE APPLIED :-

\bigstar\ \displaystyle{\sf{d=\frac{zM}{a^3NA} }}

SOLUTION :-

Substituting the known values in the formula above :-

\displaystyle{\sf{19.3=\frac{4\times197}{(a)^3\times6.022\times10^{23}} }}\\\\\\\displaystyle{\sf{\implies a^3=\frac{788}{7.82\times10^{23}} }}\\\\\\\displaystyle{\sf{\implies a^3=\frac{788\times10^{-23}}{7.82} }}\\\\\\\displaystyle{\sf{\implies a=4.07\times10^{-8}\ cm}}\\\\\displaystyle{\sf{\underline{\implies a=407.53\ pm}}}

Now,

\displaystyle{\sf{Radius=\frac{a}{2\sqrt{2}} }}\\\\\\\displaystyle{\sf{\implies r=\frac{4.08\times10^{-8}}{2\sqrt{2} } \ cm}}\\\\\\\displaystyle{\sf{\implies r=\frac{407.53}{2\sqrt{2}}\ pm }}\\\\\\\underline{\boxed{\boxed{\displaystyle{\sf{\implies r=144.08\ pm}}}}}

✦ So, the atomic radius of Golf(Au) is 144.08 pm.

Similar questions