Math, asked by sonalinandan1723, 10 months ago

nature of roots in 3x^2+x-2=0 *
O equal,real
O real and distinct
O O O
not real
none​

Answers

Answered by Anonymous
1

\huge\red{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Roots \ are \ real \ and \ distinct.}

\sf\orange{Explanation}

\sf{If,}

\sf{\Delta&gt;0, \ Roots \ are \ real \ and \ distinct.</p><p>}

\sf{\Delta=0, \ Roots \ are \ real \ and \ equal.}

\sf{\Delta&lt;0, \ Roots \ are \ not \ real.}

\sf{}

\huge\purple{\underline{Given:}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{3x^{2}+x-2=0}}

\huge\sf\blue{To \ find:}

\sf{Nature \ of \ roots.}

\huge\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{3x^{2}+x-2=0}}

\sf{Here, \ a=3, \ b=1 \ and \ c=-2}

\sf{Determinent=b^{2}-4ac}

\sf{\Delta=1^{2}-4(3)(-2)}

\sf{\Delta=1+24}

\sf{\Delta=25}

\sf{\Delta&gt;0}

\sf\purple{\tt{\therefore{Roots \ are \ real \ and \ distinct.}}}

Answered by Anonymous
1

Given ,

The quadratic eq is 3(x)² + x - 2 = 0

We know that , the discriminant of a quadratic equation is given by

 \star \: \sf \: Discriminant  \: (D) =  {(b)}^{2}  - 4ac

Substitute the known values , we get

 \sf \Rightarrow  D =  {(1)}^{2}  - 4(3)(-2) \\  \\  \Rightarrow \sf</p><p>D = 1 + 24 \\  \\ \Rightarrow  \sf</p><p>D = 25 &gt; 0

 \therefore \sf \bold{ \underline{The \:  given  \: eq  \: has \:  two  \: distinct \: and \:  real  \: roots  \: }}

Similar questions