Math, asked by Vyomsingh, 6 months ago

NCERT 2020
CLASS 12.
(TRIGONOMETRY)

Solve if you know..

Irrelevant answers will be directly Reported✏️✒️​

Attachments:

Answers

Answered by anindyaadhikari13
26

Question:-

  • If  \sf \tan( \frac{x}{2} )  =  \sqrt{ \frac{1 - e}{1 + e} }  \times  \tan(  \frac{ \alpha }{2} ) then find the value of  \sf \cos \alpha

Formula to be used here:-

  •  \sf \tan( \frac{x}{2} )  =  \sqrt{ \frac{1 -  \cos(x) }{1 +  \cos(x) } }

Solution:-

  • Check out the attachment. Solution is provided there.

 \sf \tan( \frac{x}{2} )  =  \sqrt{ \frac{1 - e}{1 + e} }  \times  \tan(  \frac{ \alpha }{2} )

 \sf \implies \sqrt{ \frac{1 -  \cos(x) }{1 +  \cos(x) } }  =  \sqrt{ \frac{1 - e}{1 + e} }  \times  \sqrt{ \frac{1 -  \cos( \alpha ) }{1 +  \cos( \alpha ) } }

Squaring both side, we get,

 \sf \frac{1 -  \cos(x) }{1 +  \cos(x) }  =   \frac{(1 - e)(1 -  \cos( \alpha )) }{(1 + e)(1 +  \cos( \alpha )) }

On cross multiplying and simplifying, we get,

 \sf 2 \cos( \alpha )  + 2e = 2 \cos(x)  + 2e \cos(x)  \cos(\alpha )

 \sf \implies 2 \cos( \alpha )  - 2e \cos( \alpha )  \cos(x)  =2  \cos(x)  - 2e

 \sf \implies  \cos( \alpha )  - e \cos( \alpha )  \cos(x)  =  \cos(x)  - e

 \sf \implies  \cos( \alpha ) (1 - e  \cos(x)  )=  \cos(x)  - e

 \sf \implies  \cos( \alpha )=   \frac{\cos(x)  - e}{1 - e \cos(x) }

Answer:-

 \boxed{ \sf \cos( \alpha )=   \frac{\cos(x)  - e}{1 - e \cos(x) }}

Attachments:
Answered by Itzraisingstar
14

\bold{QuestioN:}

\bold{if\:tan\:\frac{x}{2}=\sqrt{\frac{1-e}{1+e} }\:tan \:\frac{\alpha }{2},\:then\:what\:is\:cos\alpha  ??   }

\huge\fcolorbox{black}{lime}{AnsweR:}  ^_^

__________________________________

\bold{(tan\:(\frac{x}{2} ))^2 = (\sqrt{\frac{1-e}{1+e} } )^2\:tan\:(\frac{\alpha}{2})  },

\bold{tan^2\:\frac{x}{2}=\frac{1-e}{1+e}\:tan^2\:\frac{\alpha }{2}   },

\bold{tan^2\:\frac{\alpha }{2} }  =  \small\boxed{\frac{(1+e)\:tan^2\:(\frac{x}{2} )}{(1-e)} },

\bold{cos\:\alpha =} \boxed{\frac{1-tan^2\:\frac{\alpha }{2} }{1+tan^2\:\frac{\alpha }{2} } },

\large\boxed{=\frac{\frac{1-(1+e)\:tan^2\:\frac{x }{2} }{(1-e)} }{1+\frac{(1+e)}{(1-e) }tan^2\:\frac{x }{2}   } },

\bold{cos\:\alpha =} \boxed{\frac{(1-e)-(1+e)\:tan^2\:\frac{x}{2} }{(1-e)+(1+e)\:tan^2\:\frac{x}{2}} }

\bold{cos\:\alpha =}   \large\boxed{\frac{(1-tan^2\frac{x}{2}-e(1+tan^2\frac{x}{2} ) )}{(1+tan^2\frac{x}{2}-e(1-tan^2\frac{x}{2} ) )} }

\bold{cos\:\alpha =}  \large\boxed{\frac{(\frac{1-tan^2\frac{x}{2} }{1+tan^2\frac{x}{2} } )-e}{1-e(\frac{1-tan^2\frac{x}{2} }{1+tan^2\frac{x}{2} } )} }

\bold{So,\:cos\alpha = }  \large\boxed{\frac{cos\:x-e}{1-ecos\:x}}.

\large\fcolorbox{black}{lime}{Hope\:my\:answer\:is\:short\:but\:correct\:and\:perfect}

____________________________________

You helped me so I thought to help you!

\large{\underbrace{\overbrace{\boxed{\boxed{\mathfrak{Have\:a\:great\:life\:ahead!}}}}}

Similar questions