Math, asked by ffiregaming786, 8 months ago

NCERT Questions
1 Use Euclid's division algorithm to find the HCF of:
(i) 135 and 225
(ii) 196 and 38220​

Answers

Answered by AnnuMe
1

Answer:

1. HCF = 45

2. HCF = 196

Step-by-step explanation:

* The HCF is always the divisor ( b ) that remains when the remainder   becomes 0

keys -

a = dividend   b = divisor  q = quotient   r = remainder

Euclid division algorithm :  a = bq + r

Q.1

  • a = 225  b = 135

                           135 )  225  ( 1

                                     135

                                  ------------

                                      90

                                   -----------

q = 1

225 = 135 x 1 + 90

                              where r = 90 ≠ 0

  • a = 135  b = 90

                                90  )  135  ( 1

                                           90

                                     --------------

                                             45

                                      ----------------

q = 1

135 = 90 x 1 + 45

                             where r = 45 ≠ 0

  • a = 90      b = 45

                                     45 )  90  ( 2

                                              90

                                          ------------

                                               0

                                           ------------

q = 2

90 = 45 x 2 + 0

                          where r = 0 = 0

So we can stop the division now as we got the remainder = 0

∴ The HCF of 225 and 135 = 45

Q.2

  • a = 196     b = 38220

                                           195  )  38220  ( 195

                                                      196 ↓ |

                                                   ----------  |

                                                       1862  |

                                                       1764   |

                                                     ---------- ↓

                                                             980

                                                             980

                                                       ---------------

                                                               0

                                                      ----------------

a = 38220  b = 196  q = 195

38220 = 196 x 195 + 0

                                     where r = 0 = 0

 So we can stop the division now as we got the remainder = 0

∴ The HCF of 38220 and 196 = 196        

HOPE IT HELPS ..

Answered by llTheUnkownStarll
1

\large \fbox \red{Correct Question:}

1. Use Euclid's division algorithm to find the HCF of:

(i) 135 and 225

(i) 196 and 38220

\large \fbox \red{Required Solution:}

 \bold{(i) 135  \: and  \: 225}

As you can see, from the question 225 is greater than 135.

Therefore, by Euclid’s division algorithm, we have,

 \mapsto{\textrm{{{\color{navy}{225 = 135 × 1 + 90}}}}}

Now, remainder 90 ≠ 0, thus again using division lemma for 90, we get,

 \mapsto{\textrm{{{\color{navy} {135= 90 × 1 + 45}}}}}

Again, 45 ≠ 0, repeating the above step for 45, we get,

 \mapsto{\textrm{{{\color{navy} {90 = 45 × 2 + 0}}}}}

The remainder is now zero, so our method stops here.

Since, in the last step, the divisor is 45, therefore, HCF (225,135) = HCF (135, 90) = HCF (90, 45) = 45.

 \fbox \orange{Hence, the HCF of 225 and 135 is 45.}

 \bold{(ii) 196 \:  and \:  38220}

In this given question, 38220 >196, therefore the by applying Euclid’s division algorithm and taking 38220 as divisor, we get,

 \mapsto{\textrm{{{\color{navy} {38220 = 196 × 195 + 0}}}}}

We have already got the remainder as 0 here. Therefore, HCF(196, 38220) = 196.

 \fbox \orange{Hence, the HCF of 196 and 38220 is 196.}

Thank you!

@itzshivani

Similar questions