Math, asked by Truebrainlian9899, 2 months ago

NCERT Solutions for class 9 maths​

Attachments:

Answers

Answered by ItzBrainlyLords
9

☞︎︎︎ Given :

\:

  • Side of equilateral △ = a units

\:

⇒ a = b = c

\:

Now,

\:

  • Formula

\:

  \large \rm \bigstar  \: \: s =  \dfrac{a + b + c}{2}

\:

↣ Here,

\:

  • a = a

  • b = a

  • c = a

\:

  \large \rm \implies \: \: s =  \dfrac{a +a + a}{2}

\:

  \large \rm \implies \: \: s =  \dfrac{3a}{2}

\:

  • Area of triangle

\:

Herons Formula

\:

  \large  \boxed{\mathtt{ =  \sqrt{s(s - a)(s - b)(s - c)} }}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}  \left( \dfrac{3a}{2}   - a\right)\left( \dfrac{3a}{2}   - a\right)\left( \dfrac{3a}{2}   - a\right)}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}  \left( \dfrac{3a - 2a}{2}   \right)\left( \dfrac{3a - 2a}{2}   \right)\left( \dfrac{3a - 2a}{2}   \right)}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}  \left( \dfrac{a}{2}   \right)\left( \dfrac{a}{2}   \right)\left( \dfrac{ a}{2}   \right)}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}   \times \dfrac{a}{2}    \times  \dfrac{a}{2}   \times \dfrac{ a}{2}   }

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3{a }^{4} }{16}   }

\:

 \:  \:  \:  \:  \:  \large \rm \therefore\:  { \dfrac{ \sqrt{ 3} \: {a }^{2} }{4}   }

\:

  • (derived Formula)

\:

 :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \: {a }^{2} }{4}   }

\:

➢ Perimeter of board = 180cm

\:

⇒ a + a + a = 180cm

\:

⇒ 3a = 180cm

\:

  • Transposing The Terms

\:

 \large \rm \: ⇒ \: a =  \dfrac{180}{3}

\:

 \large \rm \: ⇒ \: a =  \dfrac{ \cancel{180} \:  \: 60}{ \cancel3}

\:

 \large \rm \therefore \: a =  60cm

\:

 \:  \:  \:  \:  :   \mapsto \:  \:  \:  \large \rm  area = { \dfrac{ \sqrt{ 3} \: {a }^{2} }{4}   }

\:

  \:  \: :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \: {(60) }^{2} }{4}   }

\:

  \:  \: :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \:  \times 60 \times 60 }{4}   }

\:

 :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \:  \times 60 \times  \cancel{60}  15}{ \cancel4}   }

\:

⇒ area = 900√3cm²

\:

Area = 901.73 cm²

Answered by xXItzSujithaXx34
1

It is given that:

X

Equating the corresponding elements of the two matrices, we have:

a+4c=−7

b+4d=2

2a+5c=−8

2b+5d=4

3a+6c=−9

3b+6d=6

Now, a+4c=−7⇒a=−7−4c

∴2a+5c=−8⇒−14−8c+5c=−8

⇒−3c=6⇒c=−2

∴a=−7−4(−2)=−7+8=1

Now, b+4d=2⇒b=2−4d

∴2b+5d=4⇒4−8d+5d=4

⇒−3d=0

⇒d=0

∴b=2−4(0)=2

Thus, a=1,b=2,c=−2,d=0

Hence, the required matrix X is [

1

2

−2

0

]

Similar questions