Math, asked by Truebrainlian9899, 2 months ago

Ncert Solutions for class 9 maths Herons Formula

ex1
q1

last 200 point ​

Answers

Answered by ItzBrainlyLords
11

Step-by-step explanation:

☞︎︎︎ Given :

\:

Side of equilateral △ = a units

\:

⇒ a = b = c

\:

↣ Now,

\:

Formula

\:

  \large \rm \bigstar  \: \: s =  \dfrac{a + b + c}{2}

\:

↣ Here,

\:

a = a

b = a

c = a

\:

  \large \rm \implies \: \: s =  \dfrac{a +a + a}{2}

\:

  \large \rm \implies \: \: s =  \dfrac{3a}{2}

\:

Area of triangle

\:

☆ Herons Formula

\:

  \large  \boxed{\mathtt{ =  \sqrt{s(s - a)(s - b)(s - c)} }}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}  \left( \dfrac{3a}{2}   - a\right)\left( \dfrac{3a}{2}   - a\right)\left( \dfrac{3a}{2}   - a\right)}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}  \left( \dfrac{3a - 2a}{2}   \right)\left( \dfrac{3a - 2a}{2}   \right)\left( \dfrac{3a - 2a}{2}   \right)}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}  \left( \dfrac{a}{2}   \right)\left( \dfrac{a}{2}   \right)\left( \dfrac{ a}{2}   \right)}

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3a}{2}   \times \dfrac{a}{2}    \times  \dfrac{a}{2}   \times \dfrac{ a}{2}   }

\:

 \large \rm⇒ \:  \sqrt{ \dfrac{3{a }^{4} }{16}   }

\:

 \:  \:  \:  \:  \:  \large \rm \therefore\:  { \dfrac{ \sqrt{ 3} \: {a }^{2} }{4}   }

\:

(derived Formula)

\:

 :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \: {a }^{2} }{4}   }

\:

➢ Perimeter of board = 180cm

\:

⇒ a + a + a = 180cm

\:

⇒ 3a = 180cm

\:

Transposing The Terms

\:

 \large \rm \: ⇒ \: a =  \dfrac{180}{3}

\:

 \large \rm \: ⇒ \: a =  \dfrac{ \cancel{180} \:  \: 60}{ \cancel3}

\:

 \large \rm \therefore \: a =  60cm

\:

 \:  \:  \:  \:  :   \mapsto \:  \:  \:  \large \rm  area = { \dfrac{ \sqrt{ 3} \: {a }^{2} }{4}   }

\:

  \:  \: :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \: {(60) }^{2} }{4}   }

\:

  \:  \: :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \:  \times 60 \times 60 }{4}   }

\:

 :  \implies \large \rm  area = { \dfrac{ \sqrt{ 3} \:  \times 60 \times  \cancel{60}  15}{ \cancel4}   }

\:

⇒ area = 900√3cm²

\:

Area = 901.73 cm²

Answered by xXItzSujithaXx34
28

Sides of a triangle are in the ratio of 12 : 17 : 25 and its perimeter is 540 cm. Find its area.

Solution:

Let the sides of the triangle be

a = 12x cm, b = 17x cm, c = 25x cm

Perimeter of the triangle = 540 cm

Now, 12x + 17x + 25x = 540

⇒ 54x = 54 ⇒ x = 10

∴ a = (12 x10)cm = 120cm,

b = (17 x 10) cm = 170 cm

and c = (25 x 10)cm = 250 cm

Now, semi-perimeter, s = 5402cm = 270 cm

NCERT Solutions for Class 9 Maths Chapter 12 Heron's Formula Ex 12.1 Q5

Similar questions