Ncert Solutions for class 9 maths Herons Formula
Take points ..
i m going
Answers
Step-by-step explanation:
☞︎︎︎ Given :
Side of equilateral △ = a units
⇒ a = b = c
↣ Now,
Formula
↣ Here,
a = a
b = a
c = a
Area of triangle
☆ Herons Formula
(derived Formula)
➢ Perimeter of board = 180cm
⇒ a + a + a = 180cm
⇒ 3a = 180cm
Transposing The Terms
⇒ area = 900√3cm²
Area = 901.73 cm²
Area of the square =256m2=256m2 (given)
⇒(side)2=(16)2⇒(side)2=(16)2
⇒ Side of the square=16m⇒ Side of the square=16m
∴ The Perimeter of the square=4×side∴ The Perimeter of the square=4×side
=4×16=4×16
= 64 mArea of the square =256m2=256m2 (given)
⇒(side)2=(16)2⇒(side)2=(16)2
⇒ Side of the square=16m⇒ Side of the square=16m
∴ The Perimeter of the square=4×side∴ The Perimeter of the square=4×side
=4×16=4×16
= 64 mArea of the square =256m2=256m2 (given)
⇒(side)2=(16)2⇒(side)2=(16)2
⇒ Side of the square=16m⇒ Side of the square=16m
∴ The Perimeter of the square=4×side∴ The Perimeter of the square=4×side
=4×16=4×16
= 64 mArea of the square =256m2=256m2 (given)
⇒(side)2=(16)2⇒(side)2=(16)2
⇒ Side of the square=16m⇒ Side of the square=16m
∴ The Perimeter of the square=4×side∴ The Perimeter of the square=4×side
=4×16=4×16
= 64 m