ncr/ncr-1=n-r+1/r
prove this
Answers
Answered by
0
Answer:
nCr = n! / (n-r)! x r! and r! = r x (r-1)!
nCr
= n! / (n-r)! x r!
= n! / (n-r)! x r(r-1)!
nCr-1
= n! / (n-(r-1))! x (r-1)!
= n! / (n-r+1)! x (r-1)!
= n! / (n-r+1)(n-r)! x (r-1)!
(n+1)Cr
= (n+1)! / ((n+1) – r)! x r!
= (n+1)n! / (n-r+1)! x r(r-1)!
now
LHS
= nCr + (n+1)Cr
= n! / (n-r)! x r(r-1)! + n! / (n-r+1)(n-r)! x (r-1)!
= n! ( (n-r+1) + r / (n-r+1)(n-r)!xr(r-1)! )
= n! ( n-r+1-r / (n+1 – r)(n-r)! x r! )
= n! ( n+1 / ((n+1) – r)! x r! )
= (n+1)n! / ((n+1) -r)! x r!
= (n+1)! / ( (n+1) -r )! x r!
= (n+1) C r
= RHS
Similar questions