Math, asked by aathrav4332, 1 year ago

ncx= ncy and , x not equal to y, Then x+y=?

Answers

Answered by Anonymous
24

Combinations :  

 \mathsf{^{n}{C}_x\:=\:^{n} C_y}  

Given,

x is not equal to y.  

➡️ x ≠ y   

Now,    

 \mathsf{^{n}{C}_x\:=\:^{n} C_y}    

By using the formula,      

 \boxed{\mathsf{^{n}{C}_r\:=\:^{n} C_{(n-r) }}}

So,  

 \mathsf{^{n}{C}_y\:=\:^{n} C_{(n-y) }}    

 \mathsf{^{n}{C}_x\:=\:^{n} C_{(n-y)}}    

 \mathsf{x\:=\:n\:-\:y}    

 \mathsf{x\:+\:y\:=\:n}      

 \boxed{\boxed{ \mathsf{x\:+\:y\:=\:n}}}  

Combination Definition :    

Selections made by taking all or few number of objects irrelevant of its arrangement is called a combination.   

Notation :    

\boxed{ \mathsf{^{n}{C}_r}} .

Answered by Anonymous
19

\huge{\ulcorner{\red{\sf{Answer}}}}\rfloor

♦ Provided in question :-

 \sf{ ^nC_x =\: ^nC_y }

→ x ≠ y

♦ Before we start solving we must know :-

• What is Combination in Mathematics ?

→ The number of possible ways of selecting "r" number of object from given "n" number of objects .

• How to find out the Combination ?

→ Way to find out combination is

 \sf{\dfrac{n!}{(n-r)! \times r!}}

• Representation of Combination ?

 \longrightarrow \: ^nC_r

♦ By using above :-

 \sf{ ^nC_x = \:^nC_y }

 \implies \sf{\dfrac{n!}{(n-x)! \times x!} = \dfrac{n!}{(n-y)! \times y!}}

 \implies \sf{\dfrac{1}{(n-x)! \times x!} = \dfrac{1}{(n-y)! \times y!}}

 \implies \sf{\dfrac{(n-y)!\times y!}{(n-x)! \times x!} = 1}

♦ Then via making some conclusion :-

• That :-

 \sf{a! \times b! = b! \times a!}

• Also x ≠ y

 \implies \sf{ (n-x)! = y! \: and \: (n-y)! = x! }

♦ So we can say that

 \sf{(n-x) = y \: and\: (n-y) = x}

♦ By using  \sf{(n-x) = y}

\implies \sf{n-x = y}

 \implies \sf{ n = x + y }

Or

 \large{\boxed{\boxed{\sf{x+y=n}}}}

Similar questions