Math, asked by Mohibwallah, 6 months ago

nd maximum value of x1^2+x2^2 where x1 and x2 are roots of quadratic equation x^2-kx+(k^2+7k+15)

maths kings iska ans with explaination send kijie
agar ans Sahi to me aapko follow karunga nahito aap muje follow karana or ha ans 19 Nahi he​​

Answers

Answered by BrainlyPopularman
22

GIVEN :

• Quadratic equation x² - kx + (k² + 7k + 15) = 0.

• Roots of quadratic equation  \implies \bf \:\: x_1 \: and \: x_2 \:\:

TO FIND :

• Maximum value of   \bf \:\: x_1^{2} +x_2^{2}  = ?\:\:

SOLUTION :

• We should write this as –

\\\implies\bf x_1^{2} +x_2^{2}  =(x_1 + x_2)^{2}  - 2(x_1)(x_2)\:  \: \:  \:  \:\: -  -  -  -eq.(1)

• We know that –

\\\implies\bf Sum \:  \: of \:  \: roots =  - \dfrac{Coefficient \:  \: of \:  \: x}{Coefficient \:  \:of \:  \:  {x}^{2}  }\:\:

\\\implies\bf x_1 + x_2=  - \dfrac{( - k)}{1}\:\:

\\\implies\bf x_1 + x_2=k \:  \: \:  \:  \:\: -  -  -  -eq.(2)

• And –

\\\implies\bf Product \:  \: of \:  \: roots =   \dfrac{Constent \:  \: term}{Coefficient \:  \:of \:  \:  {x}^{2}  }\:\:

\\\implies\bf (x_1)( x_2)= \dfrac{( {k}^{2}  + 7k + 15)}{1}\:\:

\\\implies\bf (x_1)( x_2)={k}^{2}  + 7k + 15 \:  \: \:  \:  \:\: -  -  -  -eq.(3)

• Put the values from eq.(3) & eq.(2) in eq.(1)

\\\implies\bf x_1^{2} +x_2^{2}  =(k)^{2}  - 2({k}^{2}  + 7k + 15)

• Let –

\\\implies\bf x_1^{2} +x_2^{2} =P

• So that –

\\\implies\bf P =k^{2}  - 2{k}^{2} - 14k - 30

\\\implies\bf P = - {k}^{2} - 14k - 30

• Now Differentiate with respect to 'k' –

\\\implies\bf  \dfrac{dP}{dk} = -2k- 14

• For Maximum/Minimum –

\\\implies\bf  \dfrac{dP}{dk} = 0

\\\implies\bf -2k- 14= 0

\\\implies\bf 2k + 14= 0

\\\implies\bf 2k =  - 14

\\\implies \large{ \boxed{\bf k =  -7}}

• Now 'P' –

\\\implies\bf P_{max} = - {(- 7)}^{2} - 14( - 7) - 30

\\\implies\bf P_{max} = -49 + 98 - 30

\\\implies\bf P_{max} =  98 - 79

\\\implies \large{ \boxed{\bf P_{max} =19}}

▪︎ Hence , Maximum value of  \bf \:x_1^{2} +x_2^{2} \: is 19.

Answered by Anonymous
7

Step-by-step explanation:

M 19 is the answer

I hope it may help to you..

Similar questions