Math, asked by tiwariji12224, 8 months ago

need a little help over here.​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \lim_{x -  > 0}  ( \frac{ \sqrt{1  + x +  {x}^{2} }  - 1}{x} )

Rationalizing the denominator,

 = \lim_{x -  > 0}( \frac{( \sqrt{1 + x +  {x}^{2} }  - 1)( \sqrt{1 + x +  {x}^{2} } + 1) }{x( \sqrt{1 + x +  {x}^{2} } + 1) } )

 = \lim_{x -  > 0}( \frac{1 + x +  {x}^{2}  - 1}{x( \sqrt{1 + x +  {x}^{2} }  + 1) } )

 = \lim_{x -  > 0} (\frac{x(x + 1)}{x (\sqrt{1 + x +  {x}^{2} } + 1) } )

 = \lim_{x -  > 0}( \frac{x + 1}{ \sqrt{1 + x +  {x}^{2} }  + 1} )

 =  \frac{0 + 1}{ \sqrt{1 + 0 + 0}  + 1}

 =  \frac{1}{2}

Similar questions