Math, asked by dessierose2005, 7 months ago

need answer as soon as possible ​

Attachments:

Answers

Answered by yogitayelonde36
1

Answer:

I really appreciate you for not knowing answer

Answered by Anonymous
5

Let building be AB & tower be CE

Given height of building AB = 7m

From the top of building, angle of elevation of top of tower = 60°

Hence, ∠EAD = 60°

Angle of depression of the foot of the tower = 45°

Hence, ∠CAD = 45°

We need to find height of tower i.e. CE

Since AB & CD are parallel,

CD = AB = 7 m

Also, AD & BC are parallel

So, AD = BC

Since tower & building are vertical to ground

∠ABC = 90° & ∠EDA = 90°

Now, AD & BC are parallel,

taking AC as transversal

∠ACB = ∠DAC (Alternate angles)

∠ACB = 45°

In right angle triangle ABC,

tan C = Side opposite to ∠C

Side adjacent to ∠C

tan 45º = AB

BC

1 = AB

BC

1 = 7

BC

BC = 7m

Since BC = AD

So, AD = 7m

Now, In a right angle triangle ADE,

tan A = Side opposite to ∠A

Side adjacent to ∠A

tan 60° = ED

AD

√3 = ED

AD

√3 = ED

7

7√3 = ED

ED = 7√3

Height of tower ED + DC

= 7√3 + 7

=7(√3 + 1)m

Attachments:
Similar questions