☆☆☆☆Need Help☆☆☆☆
Answer the given question.
*With expalnation*.
Attachments:
Answers
Answered by
6
Hey !!!
Here is ur solution :-
___________________
cos²¢ + 2sin²¢ + 3cos2¢²¢ + 4sin²¢ ....+200th term = 10025
means 100 term of sin²¢ 's identity and 100term of cos²¢ identities .
=> (cos²¢ + 3cos²¢ ......100term )+(2sin²¢ +4cos²¢ ....+100th term ) = 10025
Now by using AP
in cos²¢ 's identity
a = 1
d = 3 -1 =2
n = 100
S100 = n/2{2a+(n-1)d }
= 100/2{(2*1 +(100-1)2
= 50×{2+198)
=50×200
= 10000
now in the term of sin²¢
a = 2
d = 4-2 =2
n = 100
s100= 100/2+(2×2 + (100-1)2
=> 50(4 + 198)
=> 50×202
=> 10100 it can also written as 100² + 101
now from our question .
=> 10000cos²¢ + (10100 sin²¢ ) = 10025
=> 100²cos²¢ + {100²+ 100(sin²¢)} = 10025
=> 100²cos²¢ + 100²sin²¢+ 100sin²¢=10025
=> 100² (cos²¢+sin²¢) + 100sin²¢=10025
=> 10000×1 + 100sin²¢ = 10025
=> 100sin²¢ = 10025
=> sin²¢ = 10025-10000
=> 100sin²¢ = 25
=> sin²¢ = √25/100
=> sin¢ = 5/10 = b/2 =p/h -----1)
now by using Pythagoras theorem
b = √h² -p²
b= √2² - 1²
b= √4-1 = √3
cos¢ =b/h = √3/2-------2)
so, sin¢ - cos¢
=> 1/2 - √3/2
=> 1 -√3/2 Answer
Hence option a ) 1 - √3/2 is ur answer
*************************************
Hope it helps you !!!
@Rajukumar111
Here is ur solution :-
___________________
cos²¢ + 2sin²¢ + 3cos2¢²¢ + 4sin²¢ ....+200th term = 10025
means 100 term of sin²¢ 's identity and 100term of cos²¢ identities .
=> (cos²¢ + 3cos²¢ ......100term )+(2sin²¢ +4cos²¢ ....+100th term ) = 10025
Now by using AP
in cos²¢ 's identity
a = 1
d = 3 -1 =2
n = 100
S100 = n/2{2a+(n-1)d }
= 100/2{(2*1 +(100-1)2
= 50×{2+198)
=50×200
= 10000
now in the term of sin²¢
a = 2
d = 4-2 =2
n = 100
s100= 100/2+(2×2 + (100-1)2
=> 50(4 + 198)
=> 50×202
=> 10100 it can also written as 100² + 101
now from our question .
=> 10000cos²¢ + (10100 sin²¢ ) = 10025
=> 100²cos²¢ + {100²+ 100(sin²¢)} = 10025
=> 100²cos²¢ + 100²sin²¢+ 100sin²¢=10025
=> 100² (cos²¢+sin²¢) + 100sin²¢=10025
=> 10000×1 + 100sin²¢ = 10025
=> 100sin²¢ = 10025
=> sin²¢ = 10025-10000
=> 100sin²¢ = 25
=> sin²¢ = √25/100
=> sin¢ = 5/10 = b/2 =p/h -----1)
now by using Pythagoras theorem
b = √h² -p²
b= √2² - 1²
b= √4-1 = √3
cos¢ =b/h = √3/2-------2)
so, sin¢ - cos¢
=> 1/2 - √3/2
=> 1 -√3/2 Answer
Hence option a ) 1 - √3/2 is ur answer
*************************************
Hope it helps you !!!
@Rajukumar111
Anonymous:
Wow!
Answered by
11
HELLO DEAR,
we know that:-
IN an AP
cos²∅ + 2sin²∅ + 3cos²∅ + 4sin²∅ + ........(200term) = 10025
=> [cos²∅ + 3cos²∅ + 5cos²∅ +......(100term)] +
[ 2sin²∅ + 4sin²∅ + 6sin²∅ +......(100term) = 10025
=> [ 100/2×( 2cos²∅ + (100-1)2cos²∅ ] + [100/2
(2×(2sin²∅) + (100-1)2sin²∅)] = 10025
=> [ 50×{2cos²∅ ( 1 + 99)} ] + [ 50×{2sin²∅(2 +
99)}] = 10025
=> [ 100cos²∅×100 ] + [ 100sin²∅ ×101] 10025
=> 100 [ 100cos²∅ + 101sin²∅ ] = 10025
=> 4 [ 100cos²∅ + (100sin²∅ + sin²∅) ] = 401
=> 4 [ 100(cos²∅ + sin²∅) + sin²∅ ] = 401
=> 400×(1) + 4sin²∅ = 401
=> 4sin²∅ = 401 - 400 = 1
=> sin²∅ = 1/4
=> sin∅ = 1/2
=> sin∅ = sin30°
[ sin30° = 1/2 ]
=> ∅ = 30°
AND,
cos∅ = cos30° = √3/2 ,sin∅ = sin30° = 1/2
=> sin∅ - cos∅ = 1/2 - √3/2
=> (1 - √3)/2
hence, option (A) is correct
I HOPE ITS HELP YOU DEAR,
THANSK
we know that:-
IN an AP
cos²∅ + 2sin²∅ + 3cos²∅ + 4sin²∅ + ........(200term) = 10025
=> [cos²∅ + 3cos²∅ + 5cos²∅ +......(100term)] +
[ 2sin²∅ + 4sin²∅ + 6sin²∅ +......(100term) = 10025
=> [ 100/2×( 2cos²∅ + (100-1)2cos²∅ ] + [100/2
(2×(2sin²∅) + (100-1)2sin²∅)] = 10025
=> [ 50×{2cos²∅ ( 1 + 99)} ] + [ 50×{2sin²∅(2 +
99)}] = 10025
=> [ 100cos²∅×100 ] + [ 100sin²∅ ×101] 10025
=> 100 [ 100cos²∅ + 101sin²∅ ] = 10025
=> 4 [ 100cos²∅ + (100sin²∅ + sin²∅) ] = 401
=> 4 [ 100(cos²∅ + sin²∅) + sin²∅ ] = 401
=> 400×(1) + 4sin²∅ = 401
=> 4sin²∅ = 401 - 400 = 1
=> sin²∅ = 1/4
=> sin∅ = 1/2
=> sin∅ = sin30°
[ sin30° = 1/2 ]
=> ∅ = 30°
AND,
cos∅ = cos30° = √3/2 ,sin∅ = sin30° = 1/2
=> sin∅ - cos∅ = 1/2 - √3/2
=> (1 - √3)/2
hence, option (A) is correct
I HOPE ITS HELP YOU DEAR,
THANSK
Similar questions