Math, asked by arnab2261, 1 year ago

Need help...

I'll grateful if u help.. ​

Attachments:

rawatmohit21: hlo
amazinggenius123: hello
PSN03: this question is of which class?

Answers

Answered by Anonymous
17

Question:

\sqrt{\frac{(1+sin2\theta)}{1-cos^2\theta}}

Here θ ∈ [ 0 , π/4 ]

OPTION ( a ) cosec²θ

OPTION ( b ) 1

OPTION ( c ) 1 + cotθ

OPTION ( d ) 1 + tanθ

Answer:

\huge\boxed{\boxed{\red{OPTION\:C}}}

Step-by-step explanation:

The given expression is :-

\sqrt{\frac{(1+sin2\theta)}{1-cos^2\theta}}

sin2\theta\textbf{ can be written as }2sin\theta cos\theta\\\\1+sin2\theta\textbf{ can hence be written as }1+2sin\theta cos\theta\\\\\implies sin^2\theta+cos^2\theta+2sin\theta cos\theta\\\\\implies sin^2\theta+sin\theta cos\theta +sin\theta cos\theta+ cos^2\theta\\\\\implies sin\theta(sin\theta+cos\theta)+cos\theta(sin\theta+cos\theta)\\\\\implies (sin\theta+cos\theta)(sin\theta+cos\theta)

\sqrt{\frac{1+sin2\theta}{1-cos^2\theta}}\\\\\implies \sqrt{\frac{(sin\theta+cos\theta)(sin\theta+cos\theta)}{1-cos^2\theta}}\\\\\textbf{Note that $1-cos^2\theta=sin^2\theta$}\\\\\implies \sqrt{\frac{(sin\theta+cos\theta)^2}{sin^2\theta}}\\\\\implies \frac{sin\theta+cos\theta}{sin\theta}\\\\\implies \frac{sin\theta}{sin\theta}+\frac{cos\theta}{sin\theta}\\\\\implies 1+cot\theta\\\\\bf{I\:used\:\frac{cos\theta}{sin\theta}=cot\theta}

So the correct answer would be OPTION C :)

The formulas that were used in the above problem :-

\boxed{\bf{sin2x=2sinxcosx}}\\\\\boxed{\bf{sin^2x+cos^2x=1}}\\\\\textbf{All-sin-tan-cos-rule is used here.}\\\\\textsf{All trigonometric ratios are positive in the first quadrant.}


arnab2261: thanks,.. ☺️
arnab2261: I needed that......☺️☺️
Anonymous: :)
payaltahaliyanni: arnab2261 ur profile pic is so cute
chanchal12345: i think that's of riyaaz XD
payaltahaliyanni: yaa my life my everything Riyazzz
Answered by Anonymous
1

\huge</p><p>\red{\mid{\underline{\overline{\textbf{Hi\:Mate}}}\mid}}

\huge</p><p>\blue{\mid{\fbox{\tt{Answer}}\mid}}

&lt;body bgcolor=black&gt;&lt;marquee direction="down"&gt;&lt;font color=rehcdjddv&gt;

UR ANSWER IS IN ABOVE PICTURE

&lt;body bgcolor=black&gt;&lt;marquee direction="up"&gt;&lt;font color=yellow&gt;

MARK ME AS BRAINLIST

&lt;body bgcolor=black&gt;&lt;font color="red"&gt;&lt;marquee scrollamount=1300 /&gt;

Kashish here

&lt;svg width="250" height="250" viewBox="0 0 100 100"&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;path fill="pink" d="M92.71,7.27L92.71,7.27c-9.71-9.69-25.46-9.69-35.18,0L50,14.79l-7.54-7.52C32.75-2.42,17-2.42,7.29,7.27v0 c-9.71,9.69-9.71,25.41,0,35.1L50,85l42.71-42.63C102.43,32.68,102.43,16.96,92.71,7.27z"&gt;&lt;/path&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;animateTransform \ \textless \ br /\ \textgreater \ attributeName="transform" \ \textless \ br /\ \textgreater \ type="scale" \ \textless \ br /\ \textgreater \ values="1; 1.5; 1.25; 1.5; 1.5; 1;" \ \textless \ br /\ \textgreater \ dur="2s" \ \textless \ br /\ \textgreater \ repeatCount="40"&gt; \ \textless \ br /\ \textgreater \ &lt;/animateTransform&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;/svg&gt;

Attachments:
Similar questions