Math, asked by itstoya, 1 month ago

Need help
Please answer​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \lim_{x \rarr0} \frac{ \sqrt{  \cos(x) } -  \sqrt[3]{ \cos(x) }  }{ \sin^{2} (x) }  \\

 =  \lim_{x \rarr0} \frac{  \dfrac{d}{dx}  \{\sqrt{  \cos(x) } -  \sqrt[3]{ \cos(x) } \}  }{ \dfrac{d}{dx}   \{\sin^{2} (x) \} }  \\

 =  \lim_{x \rarr0} \frac{   \dfrac{ -  \sin(x) }{2\sqrt{  \cos(x) }}  +   \dfrac{ \sin(x) }{3 \sqrt[3]{ \cos ^{2} (x) } }   }{ 2\sin (x) \cos(x)   }  \\

 =  \lim_{x \rarr0} \frac{   \dfrac{ -  1 }{2\sqrt{  \cos(x) }}  +   \dfrac{ 1 }{3 \sqrt[3]{ \cos ^{2} (x) } }   }{ 2\cos(x)   }  \\

 =   \frac{   \dfrac{ -  1 }{2\sqrt{  \cos(0) }}  +   \dfrac{ 1 }{3 \sqrt[3]{ \cos ^{2} (0) } }   }{ 2\cos(0)   }  \\

 =   \frac{   \dfrac{ -  1 }{2\sqrt{  1}}  +   \dfrac{ 1 }{3 \sqrt[3]{1 } }   }{ 2(1)   }  \\

 =   \frac{   \dfrac{ -  1 }{2}  +   \dfrac{ 1 }{3  }   }{ 2   }  \\

 =   \frac{   \dfrac{ -  3 + 2 }{6}    }{ 2   }  \\

 =   \frac{   \dfrac{ -  1 }{6}    }{ 2   }  \\

 =   -  \frac{ 1    }{ 12   }  \\

Answered by mathdude500
7

\large\underline{\sf{Given \:Question - }}

Evaluate

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{ \sqrt{cosx} -  \sqrt[3]{cosx}  }{{sin}^{2}x }

 \red{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{ \sqrt{cosx} -  \sqrt[3]{cosx}  }{{sin}^{2}x }

If we put directly x = 0, we get

\rm \:  =  \: \dfrac{ \sqrt{cos0} -  \sqrt[3]{cos0}  }{{sin}^{2}0 }

\rm \:  =  \:\dfrac{1 - 1}{0}

\rm \:  =  \:\dfrac{0}{0}  \: which \: is \: meaningless

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{ \sqrt{cosx} -  \sqrt[3]{cosx}  }{{sin}^{2}x }

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{x \to 0} \frac{ \sqrt[3]{cosx}\bigg[\dfrac{ \sqrt{cosx} }{ \sqrt[3]{cosx}}  - 1\bigg]}{1 -  {cos}^{2}x}

\rm \:  =  \:\displaystyle\lim_{x \to 0} \sqrt[3]{cosx} \times \displaystyle\lim_{x \to 0} \frac{ \sqrt[6]{cosx}  - 1}{1 -  {cos}^{2} x}

\rm \:  =   - \:1\times \displaystyle\lim_{x \to 0} \frac{ \sqrt[6]{cosx}  - 1}{{cos}^{2} x - 1}

Now, to evaluate this limit, we use method of Substitution.

Let assume that

\red{\rm :\longmapsto\: \sqrt[6]{cosx}  = y}

 \red{\rm :\longmapsto\:cosx =  {y}^{6}, \:  \: as \: x \to \: 0, \:  \: y \:  \to \: 1}

So, above can be rewritten as

\rm \:  =  \: -  \: \displaystyle\lim_{y \to 1} \:  \frac{y - 1}{ {y}^{12}  - 1}

can be rewritten as

\rm \:  =  \: -  \: \displaystyle\lim_{y \to 1} \: \dfrac{1}{\dfrac{ {y}^{12}  - 1}{y - 1} }

can be further rewritten as

\rm \:  =  \: -  \: \displaystyle\lim_{y \to 1} \: \dfrac{1}{\dfrac{ {y}^{12}  -  {1}^{12} }{y - 1} }

We know,

 \red{\boxed{ \sf\:\displaystyle\lim_{x \to a} \:  \frac{ {x}^{n}  -  {a}^{n} }{x - a} =  {na}^{n - 1} }}

So, using this we get

\rm \:  =  \: -  \: 1 \times \dfrac{1}{12 \times  {(1)}^{12 - 1} }

\rm \:  =  \: -  \: 1 \times \dfrac{1}{12 \times  {(1)}^{11} }

\bf \:  =  \: -  \: \dfrac{1}{12}

Hence,

 \red{\rm :\longmapsto\:\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{ \sqrt{cosx} -  \sqrt[3]{cosx}  }{{sin}^{2}x }  =  \:  -  \:  \frac{1}{12} }}

Additional Information :-

 \red{\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1}}

 \red{\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1}}

 \red{\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1}}

 \red{\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1}}

 \red{\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga}}

Similar questions