Math, asked by Greatquestion, 11 hours ago

Need helps of brainly experts:

Attachments:

Answers

Answered by anindyaadhikari13
18

\texttt{\textsf{\large{\underline{Solution}:}}}

Given:

 \sf \implies x +  \dfrac{1}{9x} = 1

Multiplying both sides by 3, we get:

 \sf \implies 3 \bigg(x +  \dfrac{1}{9x} \bigg) = 3 \times 1

 \sf \implies 3x +  \dfrac{1}{3x} = 3

Cubing both sides, we get:

 \sf \implies  \bigg(3x +  \dfrac{1}{3x} \bigg)^{3}  =  {3}^{3}

 \sf \implies   {(3x)}^{3} +   \bigg(\dfrac{1}{3x} \bigg)^{3} +  \bigg(3 \times  {(3x)}^{2} \times  \dfrac{1}{3x}   \bigg)  + \bigg(3 \times  3x\times \bigg(  \dfrac{1}{3x} \bigg)^{2}    \bigg) =  {3}^{3}

 \sf \implies   27{x}^{3} +  \dfrac{1}{27x^{3}} +  9x +  \dfrac{1}{x} =  {3}^{3}

 \sf \implies   27{x}^{3} +  \dfrac{1}{27x^{3}} +  9 \bigg(x +  \dfrac{1}{9x} \bigg) = 27

As we know that:

 \sf \implies x +  \dfrac{1}{9x} = 1

We get:

 \sf \implies   27{x}^{3} +  \dfrac{1}{27x^{3}} +  9  \times 1 = 27

 \sf \implies   27{x}^{3} +  \dfrac{1}{27x^{3}} +  9 = 27

 \sf \implies   27{x}^{3} +  \dfrac{1}{27x^{3}}  = 18

Which is our required answer.

\texttt{\textsf{\large{\underline{Answer}:}}}

  • 27x³ + 1/27x³ = 18

\texttt{\textsf{\large{\underline{More Identities To Know}:}}}

  1. (a + b)² = a² + 2ab + b²
  2. (a - b)² = a² - 2ab + b²
  3. a² - b² = (a + b)(a - b)
  4. (a + b)³ = a³ + 3ab(a + b) + b³
  5. (a - b)³ = a³ - 3ab(a - b) - b³
  6. a³ + b³ = (a + b)(a² - ab + b²)
  7. a³ - b³ = (a - b)(a² + ab + b²)

anindyaadhikari13: Thanks for the brainliest :)
Similar questions