Math, asked by suryamps2752, 17 hours ago

NEED IT ASAP
if tanA/root3 = 1, the value of 2sin^2A - 3cos^2A

Answers

Answered by LaeeqAhmed
0

 \frac{ \tan(A) }{ \sqrt{3} }  = 1

 \implies \tan(A)   =  \sqrt{3}

\implies A   =   60\degree

2 \sin^{2} ( A )  - 3 \cos ^{2} (A)

 \implies 2 \sin^{2} ( 60 )  - 3 \cos ^{2} (60)

 \implies 2  {( \frac{ \sqrt{3} }{2} )}^{2}   - 3  {( \frac{1}{2} )}^{2}

 \implies 2  ( \frac{ 3}{4} )  - 3  ( \frac{1}{4} )

 \implies  \frac{ 6}{4}  -   \frac{3}{4}

 \orange{ \therefore  \frac{ 3}{4} }

Answered by Himanshu8715
0

Answer:

2 { \sin }^{2} A - 3 { \cos }^{2} A =  \frac{3}{4}

Step-by-step explanation:

Given that:-

 \frac{ \tan(A) }{ \sqrt{3} }  = 1

 \tan(A)  =  \sqrt{3}

A = 60°

So,

2 { \sin }^{2} A - 3 { \cos }^{2} A  \\  = 2 { (\sin60°)}^{2}  - 3 {( \cos60°) }^{2}

 = 2 { (\frac{ \sqrt{3} }{2} )}^{2}  - 3 { (\frac{1}{2}) }^{2}

 = (2 \times  \frac{3}{4} ) - (3 \times  \frac{1}{4} )

 =  \frac{3}{2}  -  \frac{3}{4}

 =  \frac{6 - 3}{4}  =  \frac{3}{4}

Similar questions