Math, asked by Anonymous, 3 months ago

Need solution of both questions (3 and 4) !

Spams will be deleted at the spot!!

Attachments:

Answers

Answered by Anonymous
21

 \sf{\underline{\underline{ \purple{ \huge{Question:}}}}}

From a  \sf{ 62 \dfrac{1}{2}} m long rope, a piece of length  \sf{ 15 \dfrac{1}{5}} m is cut off. The rest of the rope is divided into 11 equal pieces. Find the length of each equal piece.

 \\ \\ \\  \sf{\underline{\underline{ \purple{ \huge{Given:}}}}}

✰ Length of rope =  \sf{ 62 \dfrac{1}{2}} m

✰ Length of cutted piece =  \sf{ 15 \dfrac{1}{5}}

✰ The rest of the rope is divided into 11 equal pieces.

 \\ \\ \\  \sf{\underline{\underline{ \purple{ \huge{To \: Find:}}}}}

✠ The length of each equal piece.

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \huge{Solution:}}}}} \\ \\

ㅤㅤㅤㅤㅤ

To find the length of each equal pieces we will subtract the length of the cutted piece from the total length of the rope. Then we will divided by 11, as the rest of the rope is divided into 11 equal parts to get the length of each equal part.

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

The piece left when a piece of length  \sf{ 15 \dfrac{1}{5}} m is cut off from the rope

ㅤㅤㅤㅤㅤ

 \\   \sf= 62 \dfrac{1}{2}  - 15 \dfrac{1}{5}  \\  \\

\\   \sf=  \dfrac{125}{2}  -  \dfrac{76}{5}  \\  \\

\\   \sf=  \dfrac{625  - 152}{10}    \\  \\

\\   \sf=  \dfrac{473}{10}    \\  \\

\\   \bf=47. 3 \: m \\  \\

Now, the length of of each equal piece when the rest of the rope is divided into 11 equal pieces.

 \\  \\  \sf = 47.3 \div 11 \\  \\

\\   \sf = \dfrac{47.3 }{11}  \\

\\   \sf = \dfrac{ \cancel{{473}}^{43}  }{ \cancel{11} \times 10}  \\

\\   \sf = \dfrac{ 43  }{   10}  \\

\\   \bf =4.3 \: m

ㅤㅤㅤㅤㅤ

 \therefore{  \sf{The \: length \: of \: each \: equal \: piece = {\green{ \underline{ \boxed{ \sf{4.3 \: m}}}}}}}

 \\ \\ \\ \\ \sf{\underline{\underline{ \purple{ \huge{Question:}}}}}

Evaluate:

ㅤㅤㅤㅤㅤ

  \blue{\bf i.)}  \: \sf {{\bigg \{}{ \bigg(}  {\dfrac{1}{2} { \bigg)} }^{ - 3} +  { \bigg(}  {\dfrac{1}{3} { \bigg)} }^{ - 2} { \bigg \}}}^{ - 1}  \div { \bigg(}  {\dfrac{1}{4} { \bigg)} }^{ - 1}</p><p></p><p>

 \blue{ \bf{ii.)}} \sf By \: what \: number \: should \:  {\bigg (}{ \dfrac{ - 6}{5} {\bigg )}}^{2}  \: be \: divided \: so \: that \: the \: quotient \: is \: { \bigg(} { \dfrac{3}{5}{ \bigg)} }^{ - 1}

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \huge{Answer:}}}}}

  \blue{\bf i.)}  \: \sf {{\bigg \{}{ \bigg(}  {\dfrac{1}{2} { \bigg)} }^{ - 3} +  { \bigg(}  {\dfrac{1}{3} { \bigg)} }^{ - 2} { \bigg \}}}^{ - 1}  \div { \bigg(}  {\dfrac{1}{4} { \bigg)} }^{ - 1}

 \\  \\   \implies\sf {\{ {2}^{3}  +  {3}^{2}  \}}^{ - 1}   \div 4

\\  \\   \implies\sf {\{ 8+  9 \}}^{ - 1}   \div 4

\\  \\   \implies\sf {\{ 17 \}}^{ - 1}   \div 4

\\  \\   \implies\sf  \dfrac{1}{17}    \div 4

\\  \\   \implies\sf  \dfrac{1}{17}     \times  \dfrac{1}{4}

 \\  \\  { \blue \implies\bf  \dfrac{1}{68}     }

ㅤㅤㅤㅤㅤ

 \therefore{ \sf{After \: evaluating \: we \: get \:  = {\green{ \underline{ \boxed{ \bf{ \frac{1}{68} }}}}}}}

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

For answer of second part   \blue{\bf ii.)} refer the attachment ✓

ㅤㅤㅤㅤㅤ

══════════════════════

Attachments:
Similar questions