Math, asked by scholarrr, 3 months ago

Need the answer right now​

Attachments:

Answers

Answered by TheValkyrie
13

Answer:

Step-by-step explanation:

Given:

\sf \dfrac{sin\: \theta}{cot\: \theta + cosec\: \theta}=2+\dfrac{sin\: \theta}{cot\: \theta-cosec\: \theta}

To Prove:

LHS = RHS

Proof:

Consider the LHS of the equation,

\sf \dfrac{sin\: \theta}{cosec\: \theta + cot\: \theta}

Multiply numerator and denominator by cosec θ - cot θ

\sf \implies \dfrac{sin\: \theta(cosec\: \theta-cot\: \theta)}{cosec\: \theta + cot\: \theta(cosec\: \theta-cot\: \theta)}

We know,

(a + b) (a - b) = a² - b²

\sf \implies \dfrac{sin\: \theta \times cosec\:\theta-sin\: \theta \times cot\: \theta}{cosec^{2}\: \theta-cot^{2}\: \theta  }

Now we know,

cosec² θ - cot² θ = 1

cosec θ = 1/ sin θ

cot θ = cos θ/sin θ

Applying the identities,

\sf \implies sin\: \theta \times \dfrac{1}{sin\: \theta} -sin\: \theta \times \dfrac{cos\: \theta}{sin\: \theta} \times \dfrac{1}{1}

Simplifying,

\sf \implies 1-cos\: \theta---(1)

Now considering the RHS of the equation,

\sf 2+\dfrac{sin\: \theta}{cot\: \theta-cosec\: \theta}

Multiply both numerator and denominator by cot θ + cosec θ

\sf \implies 2+\dfrac{sin\: \theta(cot\: \theta+cosec\: \theta)}{cot\: \theta-cosec\: \theta(cot\: \theta+cosec\: \theta)}

Simplifying,

\sf \implies 2+\dfrac{sin\: \theta cot\: \theta+sin\: \theta cosec\: \theta}{cot^{2}\: \theta-cosec^{2}\: \theta  }

Here,

cot² θ - cosec² θ = -1

Apply the identities,

\sf \implies 2 +  \dfrac{cos\: \theta+ 1}{-1}

\sf \implies 2 + -(cos\: \theta+ 1)

\sf \implies 2 + -cos\: \theta- 1

\sf \implies 1 -cos\: \theta----(2)

From equations 1 and 2, RHS are equal, hence LHS must also be equal.

That is,

\sf \dfrac{sin\: \theta}{cot\: \theta + cosec\: \theta}=2+\dfrac{sin\: \theta}{cot\: \theta-cosec\: \theta}

Hence proved.

Similar questions