☢️Need verified Answer✔️
Don't spam✖️
Attachments:
Answers
Answered by
208
✰ Question ༄ :
✰ Given ༄ :
(1) Perpendicular = 1
(2) Base = √3 and ,
✰ To find ༄ :
- Hypotenuse of triangle
- sin a cos c + cos a sin c
- cos a cos c - sin a sin c
✰ Solution ༄ :
Finding Hypotenuse by Pythagoras Theorem as the given triangle is right angled triangle :
- H² = P² + B²
- H² = ( 1 )² + ( √3 )²
- H² = 1 + 3
- H² = 4
- H = √4
- H = 2
Now values :
So ,
Solving for first part :
Solving for second part :
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
✰ Question ༄ :
In triangle PQR , right angled at Q , PR + QR = 25 cm and PQ = 5 cm . Determine the values of sin P , cos P and tan P .
✰ Given ༄ :
- PR + QR = 25 cm
- PQ = 5 cm
✰ To find ༄ :
Value of ,
- (1) sin p
- (2) cos p
- (3) tan p
✰ Solution ༄ :
- By Pythagoras Theorem finding QR :
- PR² = PQ² + QR²
In question it is given that , PR + QR = 25 cm , So value of PR = 25 - QR .
Now ,
Value of QR :
- ( 25 - QR )² = ( 5 )² + ( QR )²
- 625 + QR² - ( 2 × 25 × QR ) = 25 + QR²
- 625 - 50 QR = 25 + QR² - QR²
- 625 - 50 QR = 25
- - 50 QR = 25 - 625
- - 50 QR = - 600
- QR = 600/25
- QR = 12 cm
Value of PR :
- PR + QR = 25
- PR + 12 = 25
- PR = 25 - 12
- PR = 13 cm
Therefore ,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
✰ ADITIONAL ✰
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Trigonometric Identities :
➱ Cos² θ + Sin² θ = 1.
➱ 1 + Tan² θ = Sec² θ
➱ 1 + Cot² θ = Cosec² θ
Attachments:
Answered by
3
Answer:
this is the right answer
Attachments:
Similar questions