Math, asked by MizzBholi02, 1 month ago

☢️Need verified Answer✔️

Don't spam✖️

Attachments:

Answers

Answered by Ⲧⲁⲛⳗⳕⲅⲟ
208

Question :

In  \: triangle  \: ABC ,  \: right \:  angled \:  at  \: B , \\  \:  if \:  tan \:  A =  \frac{1}{ \sqrt{3} }  ,  \: find \: the \: value \: of :  \\  \\ (i) \: sin \: a  \:   sin \: c \:  + cos \: a \: sin \: c \\  \\ (ii) \: cos \: a \: cos \: c - sin \: a \: sin \: c

Given :

(1) Perpendicular = 1

(2) Base = √3 and ,

(3) \: tan \: a \:  =  \frac{1}{ \sqrt{3} }   =  \frac{P }{B}  \:

To find :

  • Hypotenuse of triangle
  • sin a cos c + cos a sin c
  • cos a cos c - sin a sin c

✰ Solution ༄ :

Finding Hypotenuse by Pythagoras Theorem as the given triangle is right angled triangle :

  • H² = P² + B²

  • H² = ( 1 )² + ( √3 )²

  • H² = 1 + 3

  • H² = 4

  • H = √4

  • H = 2

Now values :

 \implies \: sin \: a \:  =  \frac{1}{2}  \\  \\  \implies \:cos \: c =  \frac{1}{2}  \\  \\  \implies \:sin \: c =  \frac{ \sqrt{3} }{2}  \\  \\  \implies \:cos \: a =  \frac{ \sqrt{3} }{2}

So ,

Solving for first part :

(i) \: sin \: a  \:   sin \: c \:  + cos \: a \: sin \: c  \\  \\  \implies \:  \frac{1}{2}  \times  \frac{1}{2}   +   \frac{ \sqrt{3} }{2}  \times \frac{ \sqrt{3} }{2} \\  \\ \implies \:  \frac{1}{4}  +  \frac{3}{4}  \\  \\ \implies \:   \cancel\frac{4}{4}  \\  \\ \implies \:  \boxed{ \bold \pink{1}}

Solving for second part :

(ii) \: cos \: a \: cos \: c - sin \: a \: sin \: c \\  \\  \implies \:  \frac{ \sqrt{3} }{2}  \times  \frac{1}{2}  -  \frac{1}{2}  \times  \frac{ \sqrt{3} }{2}  \\  \\ \implies \: \frac{ \sqrt{3} }{4}  -  \frac{ \sqrt{3} }{4}  \\  \\ \implies \: \boxed{ \bold \pink{0}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

In triangle PQR , right angled at Q , PR + QR = 25 cm and PQ = 5 cm . Determine the values of sin P , cos P and tan P .

✰ Given ༄ :

  • PR + QR = 25 cm

  • PQ = 5 cm

✰ To find ༄ :

Value of ,

  • (1) sin p

  • (2) cos p

  • (3) tan p

✰ Solution ༄ :

  • By Pythagoras Theorem finding QR :

  • PR² = PQ² + QR²

In question it is given that , PR + QR = 25 cm , So value of PR = 25 - QR .

Now ,

Value of QR :

  • ( 25 - QR )² = ( 5 )² + ( QR )²

  • 625 + QR² - ( 2 × 25 × QR ) = 25 + QR²

  • 625 - 50 QR = 25 + QR² - QR²

  • 625 - 50 QR = 25

  • - 50 QR = 25 - 625

  • - 50 QR = - 600

  • QR = 600/25

  • QR = 12 cm

Value of PR :

  • PR + QR = 25

  • PR + 12 = 25

  • PR = 25 - 12

  • PR = 13 cm

Therefore ,

(1) \: sin \: p \:  =  \frac{P }{</u></strong><strong><u>H</u></strong><strong><u>}  \\  \\ \implies \:  \boxed{ \bold \pink{ sin \: p =  \frac{12}{13} }} \\  \\ (2) \: cos \: p \:  =  \frac{B}{H}  \\  \\ \implies \:   \boxed{ \bold \pink{cos \: p \:  =  \frac{5}{13} }} \\  \\ (3) \: tan \: p =  \frac{P}{B}  \\  \\ \implies \:    \boxed{ \bold\pink{tan \: p \:  =  \frac{12}{5} }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADITIONAL

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Trigonometric Identities :

Cos² θ + Sin² θ = 1.

1 + Tan² θ = Sec² θ

1 + Cot² θ = Cosec² θ

Attachments:
Answered by baranidharan375
3

Answer:

this is the right answer

Attachments:
Similar questions