Math, asked by emiwayb916, 1 month ago

negation form
~[(p∧q)→r]=​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \sim\bigg((p \land \: q) \to \: r \bigg)

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c|c} \bf p & \bf q& \bf r & \bf   p \land \: q& \bf \ \: (p \land \: q) \to \: r& \bf \sim \: (p \land \: q) \to \: r\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf T& \sf T& \sf F\\ \\\sf T & \sf T & \sf F& \sf T& \sf F& \sf T\\ \\\sf T & \sf F & \sf T& \sf F& \sf T& \sf F\\ \\\sf T & \sf F & \sf F& \sf F& \sf T& \sf F\\ \\\sf F & \sf T & \sf T& \sf F& \sf T& \sf F\\ \\\sf F & \sf T & \sf F& \sf F& \sf T& \sf F\\ \\\sf F & \sf F & \sf T& \sf F& \sf T& \sf F\\ \\\sf F & \sf F & \sf F& \sf F& \sf T& \sf F\\ \\ \sf  & \sf  \end{array}} \\ \end{gathered}

Additional Information

Algebra of statements :-

\red{\boxed{\sf \:p \lor \sim \: p  \equiv \: t}}

\red{\boxed{\sf \:p \land\sim \: p  \equiv \: f}}

\red{\boxed{\sf \:p \land\ \: t  \equiv \: p}}

\red{\boxed{\sf \:p \land\ \: f  \equiv \: f}}

\red{\boxed{\sf \:p \lor\ \: t \equiv \: t}}

\red{\boxed{\sf \:p \lor\ \: f \equiv \: f}}

\red{\boxed{\sf \: \sim \: (p \lor\ \: q) \equiv \:  \sim \: p \:  \land \:  \sim \: q}}

\red{\boxed{\sf \: \sim \: (p \land\ \: q) \equiv \:  \sim \: p \:  \lor \:  \sim \: q}}

\red{\boxed{\sf \: \sim \: f  \equiv \: t}}

\red{\boxed{\sf \: \sim \: t  \equiv \: f}}

Similar questions