Math, asked by 80401172, 26 days ago




Negative 4 x + 6 y = negative 18 and y = negative 2 x + 21

Answers

Answered by BrainlyTwinklingstar
1

Correct Question

-4x + 6y = -18

y = -2x + 21

Answer

\sf \dashrightarrow -4x + 6y = -18 \: \: (i)

\sf \dashrightarrow y = -2x + 21 \: \: (ii)

By first equation,

\sf \dashrightarrow -4x + 6y = -18

\sf \dashrightarrow -4x = -18 - 6y

\sf \dashrightarrow x = \dfrac{-18 - 6y}{4}

Now, let's find the value of y by second equation.

\sf \dashrightarrow y = -2x + 21

\sf \dashrightarrow -2x - y = -21

\sf \dashrightarrow -2 \bigg( \dfrac{-18 - 6y}{4} \bigg) - y = -21

\sf \dashrightarrow \dfrac{36 + 12y}{4} - y = -21

\sf \dashrightarrow \dfrac{36 + 12y - 4y}{4} = -21

\sf \dashrightarrow \dfrac{36 + 8y}{4} = -21

\sf \dashrightarrow 36 + 8y = -21 \times 4

\sf \dashrightarrow 36 + 8y = -84

\sf \dashrightarrow 8y = -84 - 36

\sf \dashrightarrow 8y = -120

\sf \dashrightarrow y = \dfrac{-120}{8}

\sf \dashrightarrow y = -15

Now, let's find the value of x by first equation.

\sf \dashrightarrow -4x + 6y = -18

\sf \dashrightarrow 4x + 6(-15) = -18

\sf \dashrightarrow 4x + (-90) = -18

\sf \dashrightarrow 4x - 90 = -18

\sf \dashrightarrow 4x = -18 + 90

\sf \dashrightarrow 4x = 72

\sf \dashrightarrow x = \dfrac{72}{4}

\sf \dashrightarrow x = 18

Hence, the values of x and y are 18 and -15 respectively.

Similar questions